PACE

Ultra-Wideband Photonically Assisted Analog-to-Digital Converters

Siliziumbasierte Analog-Digital-Wandler (ADCs), die mit Abtastraten im zweistelligen GSa/s-Bereich arbeiten, sind heute Stand der Technik. Obwohl diese Wandler heute mit noch nie dagewesenen Abtastraten arbeiten, verbessern sich die effektive Auflösung (effective number of bits, ENOB) und die Analogbandbreite nur langsam. Ein wesentliches Hindernis für die weitere Verbesserung von Bandbreite und Auflösung ist der sog. Aperturjiitter, d.h. die zeitliche Unsicherheit der Abtastung, welche das Produkt aus ENOB und Bandbreite begrenzt. Die derzeit besten ADCs  erreichen einen Aperturjitter von ca. 60fs, was ungefähr dem Taktjitter der verwendeten rauscharmen elektronischen Taktgeneratoren entspricht [1]. Eine weitere Reduzierung wird insbesondere für Abtastraten im hohen GHz-Bereich nur möglich sein, wenn sich der Taktjitter signifikant verringert. Dem gegenüber zeigen ultra-stabile moden-gekoppelte Laserquellen (MLLs) schon heute einen Taktjitter von wenigen Attosekunden [2]. Würde man diese Quellen als Referenz für die Abtastung verwenden, könnte man die Leistungsfähigkeit der ADCs um mehrere Bits verbessern, was mit diskreten elektronisch-photonisch ADCs bereits demonstriert wurde [1].
 
Im Rahmen dieses Forschungsvorhabens untersuchen wir ultra-breitbandige elektronisch-photonische ADCs in Siliziumphotonik-Technologie. Ziel ist es dabei, eine signifikante Verbesserung des ENOB-Bandbreite-Produkts experimentell zu demonstrieren. Dies würde eine revolutionäre Verbesserung des Standes der Technik bedeuten, welcher durch den geringen Jitter, die hohe Bandbreite und die massive Parallelisierbarkeit von integrierter Optik ermöglicht wird. Hierfür werden im Rahmen des Gemeinschaftsvorhabens zwei verschiedene elektronisch-photonische ADC-Architekturen und neuartige elektronisch-photonische Sampling-Techniken untersucht, für die analogen Bandbreiten von 500GHz bzw. 100 GHz, sowie ein ENOB von 5 bzw. 8 bit erreicht werden sollen.

Das Projekt PACE wird von der Deutschen Forschungsgemeinschaft im Rahmen des Schwerpunktprogramms „Electronic-Photonic Integrated Systems for Ultrafast Signal Processing“ (SPP 2111) gefördert. Projektpartner sind die RWTH Aachen (Prof. Jeremy Witzens), Karlsruhe Institut für Technologie (Prof. Christian Koos) und die Universität Hamburg /  DESY (Prof. Franz-Xaver Kärtner).

[1]    A. Khilo et al., “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express, vol. 20, no. 4, p. 4454, 2012.

[2]    A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Optical flywheels with attosecond jitter,” Nat. Photonics, vol. 6, no. 2, pp. 97–100, 2012.