PONyDAC

Precise Optical Nyquist Pulse Synthesizer DAC

Schnelle Digital-Analog-Umwandler (engl. digital-to-analog converter, DAC) sind unverzichtbare Komponenten in modernen Signalverarbeitungs-Systemen. Bandbreite und effektive Auflösung (engl. effective number of bits, ENOB) sind wichtige Kenndaten von schnellen DACs. Gleichzeitig stellen sie einen Zielkonflikt beim Entwurf eines DACs dar: Je breitbandiger der DAC, desto geringer ist typischerweise die Auflösung. Gründe dafür sind der Jitter des Taktsignals und die Linearität schneller Transistoren, die für die Ausgangsstufe des DACs benötigt werden [1]. Diese grundsätzlichen physikalischen Begrenzungen motivieren die Suche nach neuen DAC-Konzepten. Besonders vielversprechend sind elektronisch-photonische DAC-Konzepte und ihre integrierte Realisierung mittels Siliziumphotonik.

Das Ziel des PONyDAC Projekts ist die Untersuchung von elektronisch-photonischen DACs mittels Synthese optischer Nyquistpulse und optischem/elektronischem Time-interleaving. Dieses Konzept soll in modernster Siliziumphotonik-Technologie, durch die monolitische Ko-Integration von photonischen und elektronischen Komponenten, implementiert werden. Dieser völlig neue Ansatz hat das Potential die Signalbandbreite heutiger DACs zu vervielfachen.

Abbildung 1: Erzeugung breitbandiger Nyquistpulse unter Verwendung von Mach-Zehnder Modulatoren und optischem Interleaving

Das funktionale Prinzip ist in Abb. 1 dargestellt. Ein Mach-Zehnder Modulator (MZM) wird optisch von einem Continous Wave Laser (CW)  und elektronisch von einer hochfrequenten Signalquelle (RFG, radio frequency generator) mit möglichst geringem Phasenrauschen gespeist. Durch Einstellung sowohl der Amplitude und Frequenz des Signals als auch des Arbeitspunkts des MZMs können optische Frequenzkämme erzeugt werden, welche im Zeitbereich periodischen Nyquistimpulsen mit einstellbarer Repititionsrate und Pulsweite entsprechen [2]. In einem folgenden optischen Leistungsteiler werden die Nyquistpulsefolgen in N Arme aufgeteilt und zeitlich zueinander verzögert. Die Mach-Zehnder Modulatoren in den Armen werden durch elektronische DACs [s_0 s_1…s_(N-1)] angesteuert und modulieren den Lichtpuls im jeweiligen Arm. In einem optischen Kombinierer werden die modulierten Signale bei passender Verzögerung (time-interleaving) zu einem einzelnen Ausgang überlagert.

Das Konzept des optischen time-interleaving ermöglicht eine sehr hohe Ausgangsbandbreite, die ein Vielfaches der Bandbreite elektronischer DACs betragen kann. Im Projekt soll ein elektronisch-photonischer DAC in einer modernen Siliziumphotonik-Technologie realisiert werden [3], der eine Ausgangsbandbreite von mehr als 100 GHz erreicht.

Das Projekt PONyDAC wird von der Deutschen Forschungsgemeinschaft im Rahmen des Schwerpunktprogramms „Electronic-Photonic Integrated Systems for Ultrafast Signal Processing“ (SPP 2111) gefördert. Projektpartner ist das Institut für Hochfrequenztechnik der TU Braunschweig (Prof. Thomas Schneider).

[1] M. Khafaji, J. C. Scheytt, et. al., "SFDR considerations for current steering high-speed digital to analog converters," 2012 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Portland, OR, 2012

[2] M. A. Soto et al., “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun., vol. 4, no. May, pp. 1–11, 2013.

[3] L. Zimmermann et al., “BiCMOS Silicon Photonics Platform,” Opt. Fiber Communication Conference (OFC), San Diego, p. Th4E.5, 2015.

Teilprojekt zu: SPP2111 Integrierte Elektronisch-Photonische Systeme für die Ultrabreitbandige Signalverarbeitung

Laufzeit: 07/2018 - 06/2025

Gefördert durch: Deutsche Forschungsgemeinschaft (DFG)