
Compositional Hazard Analysis of
UML Component and Deployment Models?

Holger Giese, Matthias Tichy, and Daniela Schilling??

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

[hg|mtt|das]@upb.de

Abstract. The general trend towards complex technical systems with embed-
ded software results in an increasing demand for dependable high quality soft-
ware. The UML as an advanced object-oriented technology provides in principle
the essential concepts which are required to handle the increasing complexity
of these safety-critical software systems. However, the current and forthcoming
UML versions do not directly apply to the outlined problem. Available hazard
analysis techniques on the other hand do not provide the required degree of inte-
gration with software design notations. To narrow the gap between safety-critical
system development and UML techniques, the presented approach supports the
compositional hazard analysis of UML models described by restricted compo-
nent and deployment diagrams. The approach permits to systematically identify
which hazards and failures are most serious, which components or set of compo-
nents require a more detailed safety analysis, and which restrictions to the failure
propagation are assumed in the UML design.

1 Introduction

Today, an increasing demand for dependable high quality software can be observed due
to the fact that more ambitious and complex technical systems should be built. In [1],
this trend is characterized by very complex, highly integrated systems with elements
that must have a great autonomy and, thus, are very demanding w.r.t. safety analysis.
Additionally, instead of single safety-critical systems today ”systems of systems” have
to be developed even though established techniques for their safety analysis are not in
place (cf. [2]). The New Railway Technology (RailCab) project1 used later in the paper
as a motivating example is one very extreme example for such complex systems of
systems with very demanding safety requirements.

The UML as an object-oriented technology is one candidate to handle these safety-
critical systems with software and overwhelming complexity. However, the current and
forthcoming UML versions do not directly support safety-critical system development.

? This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.

?? Supported by the International Graduate School of Dynamic Intelligent Systems.
1 http://www-nbp.upb.de

Available hazard analysis techniques on the other hand have their origin in the hard-
ware world and do not provide the required degree of integration with software de-
sign notations. They assume a very simple hardware-oriented notion of components
and therefore do not directly support the identification of common mode faults. Some
more advanced approaches [3–7] support a compositional treatment of failures and their
propagation, but still a proper integration with concepts like deployment and the more
complex software interface structure is missing.

The presented approach tries to narrow the described gap between safety-critical
system development and available UML techniques by supporting the compositional
hazard analysis of UML models. As there is little value in proposing extensions to UML
if they are not accepted by the community and tool vendors (cf. [1]), we instead propose
to use only a properly defined subset of the UML 2.0 [8] component and deployment di-
agrams. The approach builds on the foundation of failure propagation analysis [3] and
component-based software engineering [9]. It provides a sound combination of these
two techniques for compositional hazard analysis and permits automatic quantitative
analysis at an early design stage. The failures can be modeled as detailed as required
using a hierarchical failure classification where correct refinement steps ensure the com-
plete coverage of all possible failures. The approach permits to systematically identify
which hazards and failures are most serious, which components or set of components
require a more detailed safety analysis, and which restrictions to the failure propagation
are assumed. We can thus systematically derive all safety requirements, which corre-
spond to required restrictions of the failure propagation of a single component or a set
of composed components in the UML design.

The paper is organized as follows: We first review in Section 2 the current proposals
for compositional hazard analysis and discuss their limitation when it comes to complex
software systems. The foundations of our approach and the process integration are then
outlined in Section 3. In Section 4, the application of the approach to some fragments
of the mentioned New Railway Technology case study is presented. More advanced
concepts of our approach which enable the systematic refinement of the safety analysis
are presented in Section 5. We close the paper with a final conclusion and outlook on
future work.

2 Related Work

Component-based hazard analysis is a hot topic in safety-critical systems research [1,
4–7]. The basic idea is to ease the hazard analysis by reusing already available informa-
tion about failure behavior of the individual components rather than always start from
scratch when performing a hazard analysis. The current approaches for component-
based hazard analysis have in common that they describe the failure propagation of
individual components (cf. failure propagation and transfer nets [3]). Outgoing failures
are the result of the combination of internal errors and incoming failures from other
components. The failure classification presented in [3, 10] is widely employed (as in [4,
6]) to distinguish different failures.

Papadopoulos et al. [4] describe an approach for a component-based hazard analy-
sis. The basic idea is a Failure Modes and Effects Analysis (FMEA) for each component

based on its interfaces (called IF-FMEA). The outgoing failures are disjunctions of a
combination of internal errors and a combination of incoming failures. They employ
the notion of block diagrams [11] for their components. The results of IF-FMEA are
combined to construct a fault tree for the complete system. A main advantage, besides
reusing already available IF-FMEA results, is an improved consistency between the
structure of the system design and the fault tree of the system. This approach has been
integrated with component concepts of the ROOM [12] methodology in [6]. A ma-
jor weakness of these approaches (as noted in [1]) is the usage of a fault tree for the
combination of the individual IF-FMEA results, since fault trees do not inherently sup-
port common mode failures like a hardware crash failure which influences all software
components executed on that node. Additionally, the authors impose an unnecessary
restriction by the definition that the internal errors are always combined by an logical
or with the incoming failures.

Kaiser et al. [5] present a component concept for fault tree analysis. They propose
to divide a fault tree into fault tree components. A fault tree component has incoming
and outgoing ports. These ports are used to connect the different components and create
the complete fault tree. The main advantage of this approach is the possibility to reuse
existing fault tree components. Thus, by building a repository of fault tree components
for often used system components, the building of fault trees becomes easier. Unfor-
tunately, the proposed fault tree components are not linked in any way to the system
components, whose faults they are modelling. In [7] this approach has been integrated
with ROOM [12]. The input and output actions are used to derive all failure ports. The
failure ports which are used for the connection of the fault tree components are still
not typed. In contrast, our approach additionally supports the flexible classification of
failures at a greater level of detail. In contrast to all discussed approaches, we explicitly
allow cycles in the failure propagation models.

3 The Approach

Following the ROOM [12] concepts in UML 2.0 [8], a well encapsulated software com-
ponent has a number of ports. Each port is typed by provided and required interfaces.
Two ports can be connected to each other by connecting a provided and a required
interface. As additional elements, connectors are employed to describe these intercon-
nections between ports. If we want to study the safety of systems described by UML
components, we have to incorporate possible faults, errors, and failures as well as their
effects into our component model. Due to the outlined restrictions of UML components,
we can thus restrict our attention to the failure propagation taking place at specific ports.
As we only want to study the higher level failure propagation during development and
post-factum safety assessment, it is sufficient to consider the high level failure modes
which are relevant at the more abstract software architecture level rather than consider-
ing the more detailed code level failure modes (cf. [2, 10]). In addition, we will abstract
from the component states and refer to Section 5 for our treatment of states.

All software ultimately relies on hardware for execution and all hardware can suffer
from part failures, power outages, etc. Experience has shown, that random hardware
faults can in contrast to systematic faults be appropriately modeled using probabilities

(cf. [13]). Hardware failures have a direct influence on the executed software and there-
fore, due to hardware sharing, common mode failures can result. Thus, the deployment
of the software components and connectors to hardware components must be an integral
part of the safety analysis.

To describe software components and connectors as well as their deployment, we
use a generalized model of components for software as well as the hardware compo-
nents which are interconnected via ports. Special deployment ports are used to describe
the possible effect of the hardware and the deployed components. We thus assume a set
C of componentsc ∈ C with software portssn ∈ P and hardware portshn ∈ P with
n ∈ IN . A systemS is characterized by such a set of components and two mappings
mapc : C × P → C andmapp : C × P → P which assigns connected ports to each
other in a type correct manner.

The nature of faults, errors, and failures is that within a component a fault can
manifest itself in form of an error which then may lead to a failure to provide the service
offered by the component. Such a failure to provide a service results in faults for other
components which depend on that component (cf.chain of faults/failures[14]). For
our setting here we can restrict our attention to the failures of a component and their
propagation and thus distinguish incoming and outgoing failures for each component
port. We can further abstract from faults as long as they are dormant and can thus restrict
our attentions to relevant errors only. Basic errors which are the direct results of local
faults have to be included in form of events. Implied errors which result from incoming
failures have in contrast to be omitted as they are not probabilistically independent
and we require instead that their effects are directly propagated between incoming and
outgoing failures. In addition, local probabilistic events such as the successful or not
successful detection of two independent occurring value failures can be used to describe
the required propagation more realistically.

To formally model the hazards and the failure propagation of the components we use
Boolean logic with quantifiers (cf. [15]). We assume two disjoint Boolean variable sets
VF andVE for failures and probabilistic independent local events, respectively. All ele-
ments can then be described by Boolean logic expressions where the basic propositions
are built by occurrences of the failure variables (fj ∈ VF), event variables (ek ∈ VE),
or one of the Boolean constantstrue andfalse. These basic propositions and Boolean
formulas might be combined using the Boolean operators∧,∨,¬,⇒,⇔ and quantifiers
∀ and∃.2 For a formulaφ we usefree(φ) to denote the set of free variables.

To describe hazards and the combinations of faults that can cause them we employ
standard fault tree analysis (FTA) [16]. In a fault tree the hazardous event is shown as
top of a fault tree. This top node is caused by a combination (and, or) of its child nodes.
This continues until the leaf nodes of the tree are reached. These leaf nodes describe the
basic events which indirectly caused the hazardous event on the top. In our case, the ba-
sic events are failures of the system components. A hazard (top event) corresponds thus
to ahazard conditionγ in form of a Boolean formula which employs only the operators
for ∨ and∧ and a subset of the outgoing failure variables of the system components.

2 The quantifiers can be mapped to standard Boolean operators using substitution ([y/x]; replace
x by y) as follows:∀v : φ equalsφ[true/v] ∧ φ[false/v] and∃v : φ equalsφ[true/v] ∨
φ[false/v].

Note, that the hazard condition is thus never disabled by additionally present failures
and thus monotonic increasing w.r.t. additional failures (cf. [15]).

Both failures, incoming and outgoing, have certain types, which are used to guide
the connection of the component failure propagation models. Following [3, 10], we dis-
tinguish the general failure classes: (1) for service provision we have omission (so),
crash (scr), or commission (sco), (2) for service timing we have early (te) or late (tl) ,
and (3) for service value we have coarse incorrect (vc) or subtle incorrect (vs). In Figure
1 we use a UML class diagram and generalizations to specify this classification. Note
that all generalization sets are complete ones and thus describe all possible subclassi-
fications at once (cf. [8, p. 122]). If more specific or general failures are relevant for
a specific port, they can be easily defined by extending the set of considered failures
accordingly within the class diagram. In our case we define that protocol failures (p)
are the union of possible omission and commission service and timing failures. We can
therefore in the following restrict our considerations on the three failure types crash
failure (scr), protocol failure (p), and value failure (v) which build a complete failure
classificationF (cf. Section 5). Failure and event variables are named according to the
following schema:fc,p,t andec,t for a component withc ∈ C, portp ∈ P, and failure
typet ∈ F . Note that in the case of events which do not relate to a specific failure type
appropriate event types are simply added.

late (tl)

Service (s)

early (te) coarse (vc) subtle (vs)

Value (v)Timing (t)

Failure

{complete,disjoint}

{complete,disjoint}

{complete,disjoint} {complete,disjoint}

{complete}
{complete} {complete}

Commission (sco)

Protocol (p)

Crash (scr)Omission (so)

Fig. 1.Failure classification with a UML class diagram

To formally model the failure propagation of components as well as possible con-
straints, we can also use Boolean logic. For every componentc ∈ C we employ afailure
propagation informationwhich consists of the following four elements: (1) A set ofout-
going failure variablesOc

F ⊆ VF , (2) a set ofincoming failure variablesIc
F ⊆ VF , (3)

a set of possible internalevent variablesV c
E ⊆ VE , and (4) a failure dependency con-

dition ψc which relates the variables for failures and errors to each other by a Boolean
logic formula (free(ψc) ⊆ Oc

F ∪ Ic
F ∪ V c

E). We requireOc
F ∩ Ic

F = ∅.
If an incoming failure represented by the variablefk can result in the outgoing

failure represented by the variablefl, the failure dependencyψc must includefl ⇔ fk.
In general, the failure propagation for an outgoing failurefj ∈ Oc

F is described by
the corresponding formulaφj in the form fj ⇔ φj . We use fault trees which may
additionally include negated elements for this purpose. For all outgoing failuresfk ∈

Oc
F their failure propagation formulasψk have to be AND-combined. Thus if a specific

outgoing failurefj is not possible we simply have to addfj ⇔ false toψc.
The parallel composition of the failure information of a number of components is

derived by simply renaming the failure and event variables appropriately and combining
the failure dependencies. We require that the failures are identical (fc,p,t = fc′,p′,t) if
and only if their component ports are matched to each other (mapc(c, p) = c′ and
mapp(c, p) = p′). Additionally, the event variable sets for any two componentsc 6=
c′ have to be disjoint (V c

E ∩ V c′

E = ∅). Such a renaming of the failures and events
requires that the failure variables used by two connected components for their connected
ports must use compatible types. As ports with their protocols and interfaces are design
entities of their own, this can be achieved by determining the relevant set of failure
types when designing the port protocols and interfaces themselves.

For the AND-composition of the local failure propagation information of all com-
ponent occurrencesc1, . . . ,cn with a hazard conditionγ in form of the Boolean formula
ψ = ψc1 ∧ . . . ∧ ψcn

∧ γ satisfiability has to be checked to determine whether the haz-
ard is possible. We can further abstract from the propagated failuresf1, . . . , fm using
existential quantification and check insteadψ∃ = ∃f1, . . . , fm : ψc1 ∧ . . . ∧ ψcn

∧ γ.
One option to compute these checks are binary decision diagrams (BDDs) [17]

which have been successfully employed to analyze fault trees encoded as Boolean for-
mulas [18]. The possible analysis includes the qualitative analysis (feasibility) and
quantitative analysis (probability) ofψ∃. The related approaches for compositional
hazard analysis discussed in Section 2 restrict the permitted propagation structures to
acyclic ones to map their results to fault trees. However, for composed failure propa-
gation information of multiple components cycles cannot be excluded. If such a cycle
is present in the system, the above mentioned formula degenerates and the probabil-
ity computation will return probability1. Using the results of [15, 19] and exploiting
the fact that the hazard conditions are always monotonic increasing, we can check
∀f1, . . . , fm((ψc1 ∧ . . . ∧ ψcn

) ⇒ γ) to derive a formula which includes all relevant
minterms ofψ∃.3 This formula can then also be used to compute the correct probability.

Our approach consists of the following steps, which are to some extent discussed in
the following section by means of an application example:

It starts with a system-dependent part, where fault trees for all system hazards are
derived. These fault trees only refer to outgoing component failures which can con-
tribute to the hazard but do not look into the components and their interconnections
(see Section 4.1).

In the next two steps, the propagation of component failures of each component
(see Section 4.2) as well as the related behavior of the deployment nodes and hardware
devices (see Section 4.3) have to be derived. If predefined components such as hardware
devices, deployment nodes, or software components are used, we can simply reuse their
failure propagation information. If, however, specific software has to be built, we have
to derive its failure propagation information first.

3 If instead of monotonic increasing conditions more general conditions have to be checked, no
efficient standard Boolean encoding exists to derive the related formula. However, in [15] an
efficient BDD operator to compute the related Boolean formula has been presented.

If a failure propagation information for each employed component is available, we
can compose them as defined by the component and deployment diagrams and employ
qualitative and quantitative analysis techniques to identify problems such as a single
point of failure or very likely scenarios for hazards (see Section 4.4).

For identified problems often a more detailed safety analysis is required. We then
have to refine the failure propagation information until all components are described at
an appropriate level of abstraction. In Section 5 the systematic support for refinement
and abstraction steps for our failure propagation models are presented.

When deriving a failure propagation model of appropriate level of abstraction, the
designer can usually identify the relevant problems and systematically derive safety
requirements of the software components and add them to the failure propagation infor-
mation. Therefore, safety requirements such as the ability of a component to compen-
sate or detect specific failures are systematically derived and documented.

Later in the design and implementation phase verification activities such as testing
and formal verification have to be employed to ensure that more detailed design models
and the final implementation still adhere to these identified safety requirements.

4 Application Example

The New Railway Technology project and its safety-critical software is used in the fol-
lowing as our application example. The project aims at using a passive track system with
intelligent shuttles that operate autonomously and make independent and decentralized
operational decisions. Shuttles either transport goods or up to approx. 10 passengers.

The track system, the shuttles are using, is divided into several disjoint sections
each of which is controlled by a section control. To enter a section, a shuttle has to be
registered at the corresponding section control. The shuttle sends its data, like position
and speed, to the section control. The section control in turn sends the data of all other
shuttles within the section. Thus, each shuttle knows which other shuttles are nearby.
Shuttles can communicate with each other and decide whether it is useful to build a
convoy (this reduces the air resistance and therefore saves energy) or not. If two shuttles
approach at a switch, they can bargain who has right of way. Depending on the topology,
the shuttles speed and its position an optimizer calculates the bid. A more detailed
description of this scenario can be found in [20].

In our example, represented in Figure 2, two shuttle components, a switch and a
section control interact with each other. A component is depicted as rectangle labelled
with at least the component’s type (string following the colon) and possibly labelled
with the component’s name (string preceding the colon). A component represents one
instance of a given type. Consider for example the component on the left of Figure
2. This component is an instance of typeShuttle and is namedsh1. The component
has seven subcomponents and two ports. In our example there is also another shuttle
componentsh2. This component is of the same type assh1, although its subcomponents
are not shown in the diagram.

Component ports are shown as small squares at the component’s border. These ports
are used for interaction with other components. In Figure 2, one port of the shuttle com-
ponent is connected with theSectionControl. In this case data is sent in both directions

:SectionControl

:ShuttleData

g1:GPS

sh1:Shuttle

sh2:Shuttle:Topology

:Switch

:ShuttleData

:ShuttleData

o1:Optimizer

swh1:SwitchHandler

sch1:SectionControlHandler

s1:SpeedSensor nl1

nl2

nl3

nl4

s1

s1

s1

s1

s1

s2

s2

s2s2

s2
s3 s4 s5

s1 s2
s3

s4s5

Fig. 2.Component structure with shuttles, switch, and section control

which is depicted by arrows at both ends of the connection. Some of the connectors are
labelled withnl1..4, this indicates that a network is used for the communication of the
corresponding components.

4.1 System Hazards

In a first step, those hazards are addressed that concern the system as a whole. The
causes of these hazards are decomposed until we reach outgoing failures of the main
system components.

Each shuttle exchanges periodically data with the section control and with the switch
it is approaching. Thus for protocol and crash failures we have the following cases: no
data is received (scr or so), not expected data is received (sco), or data is received too
early or too late (te resp.tl). In each of these cases the corresponding component can
switch to a fail-safe state or compensate those failures by pessimistic extrapolation of
the old data. Only incorrect data can lead to a hazard.

In our example, one serious hazard that can occur is a sideway collision of two
shuttles on a switch. Here we will mention only two of the possible failures that can
lead to this hazard. First, one shuttle component has incorrect own data. Or second,
one shuttle has incorrect data of the other shuttle. As the shuttle component’s behav-
ior is completely determined by its subcomponents, the main component itself cannot
produce a failure but its contained ones. The incorrect own data can be caused by the
SwitchHandler and the incorrect data of the other shuttle by theSectionControlHandler.
As these failures are related to certain components of the system the analysis on this
level is stopped. The resulting fault tree is depicted in Figure 3.

The corresponding hazard condition is:γ = fsch1,s3,v ∨ fswh1,s2,v ∨ To keep
the example simple we will in the following focus on the case that theSwitch of sh1
delivers incorrect data. Thus, we only consider the hazard conditionγ′ = fswh1,s2,v.

4.2 Components

In this section we will show the failure propagation models for theOptimizer, GPS
andSpeedSensor components as well as theSwitchHandler component, which are con-

2 shuttles crash

shuttle has incorrect
data of other shuttle

value failure of swh1

sideway on a switch

 shuttle’s own data is
incorrect

value failure of sch1����������� ��	
� �����
������ ����� �

� �

Fig. 3.Fault tree for sideway collisions of shuttles

tained within the shuttle component. These failure propagation models describe the
relation between outgoing failures, incoming failures and internal events.

&

speed
value failurevalue failure

gps

algorithmic
constraint

value
failure

&

������� ����� ����	��� ��
�� �

 ����� �	�

���	��� ����� �

(a) Value failure

crash
failure

gps crash
failure failure

speed crash hardware
crash failure

������� �	�
� ����

������� �	�
� ����
 ������� ����� ����
 � ����� ����� ����

���

(b) Crash failure

protocol
failure

failure
gps protocol

failure
speed protocol

value failure
gps speed

value failure

value
failure

&

������� �	�
� �

��

������� ���
� � ������� ����� �

������� �	�
� � ������� ����� �
������� �	�
� �

���

(c) Protocol failure

Fig. 4.Optimizer failure propagation

Figures 4(a) and 4(b) show the failure propagation for value and crash failures of the
Optimizer component. As is apparent from the component diagram of Figure 2, theOpti-
mizer uses information provided by both theGPS and theSpeedSensor to compute the
bids for the bargaining (to keep the example simple the usedTopology andShuttleData
components are not considered). TheOptimizer has the ability to detect value failures
in the data, provided by theGPS and theSpeedSensor. Due to algorithmic constraints,
the failure detection cannot detect simultaneous, similar value failures and therefore an
internal event (event typeac) is added to model this algorithmic constraint.4 The second
failure propagation model specifies that the optimizer cannot tolerate a crash failure of
one sensor or the execution hardware. A protocol failure of one of the sensors or de-
tected value failures propagate to an outgoing protocol failure as specified in Figure
4(c). Thus, we get the following failure propagation:ψo1 = (fo1,s5,v ⇔ ((fo1,s2,v ∧
fo1,s1,v) ∧ eo1,ac)) ∧ (fo1,s5,scr ⇔ (fo1,s2,scr ∧ fo1,s1,scr ∨ fo2,h1,scr)) ∧ (fo1,s5,p ⇔
(fo1,s2,p ∨ fo1,s1,p ∨ ((fo1,s2,v ∨ fo1,s1,v) ∧ (¬fo1,s5,v)))).

Figures 5(a) and 5(b) show the failure propagation for value and crash failures of
theSpeedSensor component. TheSpeedSensor relies on aSpeedometer hardware de-
vice to read its speed and it relies on a computer node for its execution.5 Thus, both
hardware devices influence the failure behavior of theSpeedSensor. TheSpeedSen-

4 We pessimistically abstract from the deployment of theOptimizer andSwitchHandler components
w.r.t. value failures as already mentioned their crash errors simply result in a fail-safe state of
the system.

5 As the Speedometer hardware device is only used for simple data reads and does not have
processing capabilities, only value errors have to be considered.

&

failure

failure
crash

value

Speedometer
value failure

������� ����� �

� ����� �
	�� � � ����� ����� ��
��

�

(a) Value failure

failure
crash

execution
crash

������� ����� ���
	

� ����� ����� �
��	

(b) Crash failure

protocol
failure

protocol
failure

������� ����� 	

� ����� ����� 	

(c) Protocol failure

Fig. 5.Speed failure propagation

sor has no internal events but its outgoing failures are influenced by incoming value
resp. crash failures. A crash failure of the execution hardware will result in an outgoing
crash failure; a value failure will result in an outgoing value failure unless the hardware
has crashed. Incoming protocol failures simply propagate to outgoing protocol failures
(cf. Figure 5(c)). Thus, we have the following failure propagation:ψs1 = (fs1,s1,scr ⇔
fs1,h1,scr)∧ (fs1,s1,v ⇔ (fs1,h2,v ∧¬fs1,h1,scr))∧ (fs1,s1,p ⇔ fs1,h1,p). We omit the
fault tree and the failure propagation model of theGPS since the model is very similar
to theSpeedSensor’s model.

Concerning our example, the failure propagation of theSwitchHandler component
is very simple as it just propagates all failures incoming from the optimizer to its out-
going port:ψswh1 = (fswh1,s1,v ⇔ fswh1,s2,v) ∧ (fswh1,s1,scr ⇔ fswh1,s2,scr) ∧
(fswh1,s1,p ⇔ fswh1,s2,p).

4.3 Deployment

To describe the connection of hardware and the deployed software components we em-
ploy UML deployment diagrams. For presentation reasons, the UML deployment di-
agrams are visually slightly extended to include the additional hardware ports. These
hardware ports are used to denote the propagation of hardware failures.

m1:MPC550 a1:Antenna

g1:GPS

<<deploy>> <<deploy>>

s1:SpeedSensor

p1:Speedometer
h1

h2 h1

h1

h1 h2

h1

(a) Deployment specification

error
antenna

valuevalue

value
antenna

failure
node crash

node crash

value

speedo−m.

speedometer

������� ����� 	��
���� �����
���� ������� ����� 	

� ����� 	 � ����� 	�
����
����

(b) Failure propagation model

Fig. 6.Deployment failure propagation

Figure 6(a) shows the deployment specification for the two software componentss1
andg1. Both software components are deployed on the same nodem1. As described in

Section 3, nodes and software components are connected by special deployment con-
nections and, thus, employ the same error and failure propagation concepts. Therefore,
an internal crash error in the nodem1 propagates indirectly to failures in both software
componentss1 andg1 as a common mode failure. In addition, both sensor software
components use special hardware devices for the actual reading of the sensor data (a1
resp.p1). We omit the mapping of the network linksnl1..4 of Figure 2 to a wireless
network for the sake of clearer presentation.

Finally, the failure propagation model of the hardware must be specified to map
internal errors to outgoing hardware failures. For our example the simplified failure
propagation model of the hardware node type MPC550 is shown in Figure 6(b). The
figure shows that the crash error of the node manifests itself as outgoing crash failure.
The same holds for the value failures of the other hardware devices which are used by
s1 andg1.

Described in terms of the failure propagation model presented in Section 3 we have
an eventem1,scr for the node type MPC550. This internal error manifests as failure
fm1,h1,scr at the outgoing execution port of that node component. The same holds for
the sensor hardware devicesa1 and p1. Therefore we have:ψd1 = (fm1,h1,scr ⇔
em1,scr), ψd2 = (fa1,h1,v ⇔ ea1,v), andψd3 = (fp1,h1,v ⇔ ep1,v).

4.4 Analysis

As presented in Section 3, all failure propagation models and the connections between
the components are combined byand operators to get the failure propagation model
for the hazard analysis of the complete system. In addition, the connections between
incoming and outgoing ports specified by the mappingmap (cf. Section 3) are used
to combine their associated failures (fm1,h1,scr = fs1,h1,scr, . . .). After the combina-
tion of all failure propagation informationψc for c ∈ C with the hazard conditionγ′,
we get the following Boolean formula for the representation of the system hazard by
eliminating the failure variables via∃-clauses:

ψ∃ = eo1,ac ∧ ¬em1,scr ∧ ea1,v ∧ ep1,v

This formula describes that the hazardγ′ occurs, if (1) both hardware sensor devices
(a1, p1) experience simultanoeus, similar value errors, (2) there is no crash error of
the computing hardwarem1, and (3) the value failures cannot be detected by theo1
component due to the similarity of the value errors. The formula can then be used to
compute the likelihood of the system hazard. Assuming the probabilitiesp(eo1,ac) =
10−7, p(em1,scr) = 10−6, p(ea1,v) = p(ep1,v) = 10−8, the computed likelihood of
the hazard is approximately:p(γ′) ≈ 10−23. The likelihood of the hazard is mostly
affected by the value errors of the sensors and the constraint of the value error detection
algorithm. Therefore, these components are good targets for improvement to reduce the
likelihood of the hazard (e.g. by a reliable GPS using additional integrity signals).

5 Advanced Concepts

System models like the proposed failure propagation model are always an abstraction
which thus can fail to cover all relevant system properties. In our case, the model does

not include the system state and the ordering of events. The failure propagation speci-
fied for each component is thus assumed to be a pessimistic abstraction such that if a
sequence of system states or ordering of events exists, where a certain configuration of
incoming failures and events can result in an outgoing failure, this case has to be cov-
ered. The considered abstraction can then only result in false negatives, but is maybe
too coarse.

The outlined general failure classification (cf. Figure 1) as well as its extension by
application specific failures results in refined directed acyclic graphs of failure types.
We require that each applied set of failure types is a complete subclassification such that
no failure type exists which is not covered by a combination of these types. Therefore, a
correct selected subset of the failure classification such as crash failure, protocol failure,
and value failure as highlighted in Figure 1 also preserves the coverage of all possible
component failures.

If we want to abstract from a too detailed failure propagation informationψc of
componentc ∈ C, we can simply replace a set of alternative failuresf1, . . . , fn by
their abstractionf by adding the conditionf ⇔ f1 ∨ . . . ∨ fn and abstract fromf1,
. . . , fn using existential qualification:ψ′c = ∃f1, . . . , fn : ψc ∧ (f ⇔ f1 ∨ . . . ∨ fn).
For the analysis of complex systems, we can exploit the reduced complexity of such
abstractions to check the absence of hazards using reduced models first and only employ
the more detailed models when required. If we refine our behavior, the same condition
can be employed to check whether our refinement does not contradict the more abstract
specification.

Besides the failure classification also the hierarchical structuring of the components
themselves can be subject to refinement. If the internal failures and errors are not rel-
evant for the system hazards, appropriate abstractions can be derived using existential
quantification as outlined above. If the system has been successfully analyzed using an
abstract failure propagation informationψc of a composed componentc ∈ C, we can
further decompose the safety analysis usingψc as a specification for the failure propa-
gationsψci

of the more detailed contained system of componentsci (1 ≤ i ≤ n) which
replacec in a more detailed view. Therefore, we have to check that for the internal fail-
uresf1, . . . ,fm holds:(∃f1, . . . , fm : ψc1 ∧ . . . ∧ ψcn) ⇒ ψc. Essentially, we have to
ensure that the internal failure propagation does not exhibit any case that is not covered
by the more abstract one.

However, it may also be the case that the system safety depends on non local proper-
ties which cannot be derived simply by composing the failure propagation information
of its contained components. Therefore, we permit to add non local restrictions to the
failure propagation. This concept can be employed to integrate non local knowledge
about the system safety into our approach.

In our example, we informally argued in the beginning that protocol failures can-
not result in a hazard. A more detailed analysis would have to distinguish between safe
and unsafe protocol failures. In a safe protocol failure the receiver and sender remain
in a state such that both employ correct pessimistic extrapolations about the possible
positions of the other one. The ability of the protocol between two entities to exhibit
no unsafe protocol state even in the presence of faults within the channel cannot simply
be derived from the composed failure propagation model without states as presented.

Therefore, the required additional non local property that a failure at one port cannot re-
sult in an unsafe failure at the connected port at the other side of the connector (channel)
can be added but remains to be checked using other techniques.

In a similar problem of our application example, such a property has been checked
using compositional model checking for an UML-RT model where the high level coor-
dination properties which overlap multiple components have been modeled by means
of coordination patterns6 (cf. [22]). The checked non-local safety requirement for the
component coordination ensured that the coordination between shuttles concerning the
establishment of convoys cannot result in an unsafe protocol failure.

6 Conclusion and Future Work

The outlined compositional approach can be used to address the safety during the archi-
tectural design of complex software systems described by a restricted notion of UML
component and deployment diagrams. As exemplified with the shuttle system example,
the approach helps to identify safety concerns and addresses them by adding additional
constraints on the failure propagation. Thus, the required safety requirements for the
software components can be derived using the outlined concepts for refinement, ab-
straction, and non local cross-component properties. Additionally, the identified safety
requirements have to be subject to verification in later phases of the process.

We are currently evaluating our approach using the RailCab project as well as an
industry project to obtain statistical data about the feasibility of our approach. There-
fore, we also started to realize some tool support for the outlined approach in the open
source UML CASE tool Fujaba7.

In the future, we plan to further integrate the approach with the already available
state-based analysis techniques in Fujaba such as compositional model checking to en-
sure consistency between the component failure propagation behavior and the full UML
model including statecharts.

References

1. McDermid, J.A.: Trends in Systems Safety: A European View? In Lindsay, P., ed.: Seventh
Australian Workshop on Industrial Experience with Safety Critical Systems and Software.
Volume 15 of Conferences in Research and Practice in Information Technology., Adelaide,
Australia, ACS (2003) 3–8

2. McDermid, J., Pumfrey, D.: Software Safety: Why is there no Consensus? In: Proceedings
of the 19th International System Safety Conference, Huntsville, AL, USA (2001) 17–25

3. Fenelon, P., McDermid, J.A., Nicolson, M., Pumfrey, D.J.: Towards integrated safety analy-
sis and design. ACM SIGAPP Applied Computing Review2 (1994) 21–32

4. Papadopoulos, Y., McDermid, J., R. Sasse, b., Heiner, G.: Analysis and synthesis of the
behaviour of complex programmable electronic systems in conditions of failure. Reliability
Engineering & System Safety71 (2001) 229–247

6 These pattern ensure required cross-component safety properties and can thus be seen as an
extension notion of safety contracts as proposed in [21].

7 www.fujaba.de

5. Kaiser, B., Liggesmeyer, P., Maeckel, O.: A New Component Concept for Fault Trees. In:
Proceedings of the 8th National Workshop on Safety Critical Systems and Software (SCS
2003), Canberra, Australia. 9-10th October 2003. Volume 33 of Research and Practice in
Information Technology. (2003)

6. Grunske, L., Neumann, R.: Quality Improvement by Integrating Non-Functional Properties
in Software Architecture Specification. In: Proc. of the Second Workshop on Evaluating and
Architecting System dependabilitY (EASY), San Jose, California, USA (2002)

7. Grunske, L.: Annotation of Component Specifications with Modular Analysis Models for
Safety Properties. In Overhage, S., Turowski, K., eds.: Proc. of the 1st Int. Workshop on
Component Engineering Methodology, Erfurt, Germany. (2003)

8. Object Management Group: UML 2.0 Superstructure Specification. (2003) Document
ptc/03-08-02.

9. Szyperski, C.: Component Software, Beyond Object-Oriented Programming. Addison-
Wesley (1998)

10. McDermid, J., Pumfrey, D.: A Development of Hazard Analysis to aid Software Design.
In: Proceedings of the Ninth Annual Conference on Computer Assurance (COMPASS94),
Gaithersburg, MD, USA (1994) 17–25

11. Ogata, K.: Modern control engineering. Prentice Hall (1990)
12. Selic, B., Gullekson, G., Ward, P.: Real-Time Object-Oriented Modeling. John Wiley and

Sons, Inc. (1994)
13. Birolini, A.: Reliability engineering : theory and practice. Springer Verlag, Berlin (1999)

3rd Edition.
14. Laprie, J.C., ed.: Dependability : basic concepts and terminology in English, French, Ger-

man, Italian and Japanese [IFIP WG 10.4, Dependable Computing and Fault Tolerance]. Vol-
ume 5 of Dependable computing and fault tolerant systems. Springer Verlag, Wien (1992)

15. Rauzy, A.: A new methodology to handle Boolean models with loops. IEEE Transactions
on Reliability52 (2003) 96– 105

16. International Electrotechnical Commission Geneva, Switzerland: International Standard IEC
61025. Fault Tree Analysis (FTA). (1990)

17. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys24 (1992) 293 – 318

18. Coudert, O., Madre, J.: Fault tree analysis:1020 prime implicants and beyond. In: Proceed-
ings of the Annual Reliability and Maintainability Symposium, Atlanta, GA , USA, IEEE
Press (1993) 240–245

19. Madre, J., Coudert, O., Fraisse, H., Bouissou, M.: Application of a new logically complete
ATMS to digraph and network-connectivity analysis. In: Proceedings of the Annual Relia-
bility and Maintainability Symposium, Anaheim, CA, USA, IEEE Press (1994) 118–123

20. Giese, H., Burmester, S., Klein, F., Schilling, D., Tichy, M.: Multi-Agent System Design
for Safety-Critical Self-Optimizing Mechatronic Systems with UML. In Henderson-Sellers,
B., Debenham, J., eds.: OOPSLA 2003 - Second International Workshop on Agent-Oriented
Methodologies, Anaheim, CA, USA, Center for Object Technology Applications and Re-
search (COTAR), University of Technology, Sydney, Australia (2003)

21. Hawkins, R.D., McDermid, J.A.: Performing Hazard and Safety Analysis of Object Oriented
Systems. In: Proceedings of the 20th System Safety Conference (ISSC2002), Denver, USA
(2002)

22. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Compositional
Verification of Real-Time UML Designs. In: Proc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland, ACM Press (2003)

