
Static and Dynamic Data Management
in Networks

Friedhelm Meyer auf der Heide and Berthold Vhcking*

Department of Mathematics and Computer Science
and Heinz Nixdorf Institute, University of Paderborn

33095 Paderborn, Germany

A b s t r a c t . We survey strategies for distributing shared objects in large
parallel and distributed systems. Examples of such objects ave global
variables in a parallel program, pages or cache lines in a virtual shared
memory system, shared files in a distributed file system, and videos and
pictures in a distributed multimedia server. We focus on strategies for
distributing, accessing, and (consistently) updating such objects. The
strategies are provably efficient with respect to various cost measures.
We describe and analyse static, hashing based schemes that minimize the
contention at the memory modules in worst case scenarios. Especially, the
benefit of redundant placement schemes is discussed. We further take net-
work congestion and bandwidth into account. Here we present schemes
that are provably efficient w.r.t, information about access frequencies.
~hlrther, dynamic schemes are presented which have good competitive
ratio, i.e, are efficient compared to an optimal dynamic dist~ribution
that is constructed using full knowledge of the dynamic access pattern.

1 I n t r o d u c t i o n

One of the basic problems in large parallel and distributed systems is the da ta
management . In this paper, we consider the problem of distributing and accessing
shared objects in such an environment. The objects are, e.g., global variables in
a parallel program, pages or cache lines in a virtual shared memory system,
shared files in a distributed file system, or media information (video, audio,
text, graphics) on a media server.

Most work concerning with data management in parallel and distributed sys-
tems investigates either hashing or caching based strategies. Hashing distributes
the shared objects uniformly at random among the memory modules, which
yields an even distribution of the da ta and therfore achieves a good load bal-
ance. However~ uniform hashing gives up any locality in the pa t te rn of read and
write accesses. Caching exploits locality by placing or moving copies of the ob-
jects at or close to the accessing processors. The basic idea is tha t this minimizes

* email: {fmadh,voecking}@uni-paderborn.de. Supported in part by DFG-Sonderfor-
schungsbereich 376 "Massive Parallelit/it: Algorithmen, Entwurfsmethoden, Anwen-
dungen', by EU ESPRIT Long Term Research Project 20244 (ALCOM-IT), and by
DFG Leibniz Grant Me872/6-1.

47

the distances and therefore decreases the total communication load. The main
problem is that minimizing distances can produce bottlenecks in the system,
e.g., if many objects are placed on a central processor in the network.

In this paper, we discuss hashing and caching based data management strate-
gies for two different system scenarios. Of course, efficient strategies must de-
pend on the characteristics of the system. These characteristics are determined
by several parameters, including the processor and memory speeds, the network
topology, and the bandwidths and latencies of the buses and links. Usually, the
memory banks and the the routing network are the bottlenecks of the system,
because increasing their performance is much more expensive than increasing
processor speed. Our scenarios should reflect this phenomenon.

Scenario 1: Here we deal with data distribution in a system in which the memory
modules are the bottleneck. This scenario is typical, e.g., for data servers in
which archive data is stored on hard discs or in other relatively slow memory
modules. These modules are usually connected via a network, which provides
sufficiently large bandwidth, to several external communication units, e.g., ATM
or SCI ports. For instance, the network is an indirect high-bandwidth butterfly
or banyan network. Here caching is of interest only on the user or client side,
because there is no notion of locality between the inputs and the outputs of these
networks.

The main problem is to distribute the data among the modules in such a way
that each module has to satisfy nearly the same amount of requests. Usually,
the data objects are partioned into data packets of fixed size, e.g, 1 Kbyte. For
simplicity, we assume that the time is divided into rounds of fixed length. Then
the maximum number of requests that are directed to the same module in the
same round is called the contention. Clearly, high contention means that the
performance goes down. Thus, it is important to distribute the data packets
such that the contention is as small as possible.

One of the most intuitive strategies to distribute the data packets among the
modules is round robin, i.e., the packets are numbered in some order and the i-th
packet is stored in module i modulo the number of modules. The advantage of
this strategy is that it distributes the packets evenly among the modules. How-
ever, in some cases this yields high contention. A bet ter strategy is hashing, i.e.,
a (pseudo-)random mapping of the packets to the memory modules. This also
yields an even distribution among the modules. In particular, it can be shown
that the expected contention is relatively small. Let n denote the number of
modules, and m denote the number of requests in a round. Then the expected

(o0o) contention is 0 ~ + log(l+~.logn) , if all requests are directed to distinct ob-

jects. Tha t means, if the slackness is sufficiently large, i.e, if m _> n . log n, then
we get optimal contention up to a constant factor. However, most data servers
are required to give very fast responses, in particular, in realtime environments.
In this case, slackness is not a good solution since it increases the response time.

In this paper, we describe a strategy which uses redundant placement. That
means our strategy places the data packets in more than one module. For in-

48

stance, 2 copies are placed in randomly selected modules. We show that this
redundant placement yields nearly optimal contention without requiring any
slackness, e.g., redundancy 2 yields contention 2 for read-only servers.

Scenario 2: Here we assume that the routing mechanism is the system's bottle-
neck, i.e., we focus on data management in parallel processor systems in which
the processors are connected by a relatively sparse network. Each processor is
assumed to have its own local memory module such that shared objects have to
be distributed among these modules. This scenario is typical for most of today's
parallel computers, including the Parsytec GCel and GCpp, Intel Paragon, Fu-
jitsu AP1000, and Cray T3D and T3E. The processors in all these systems are
connected by mesh- or torus-networks. Clearly, the larger the number of pro-
cessor in these systems, the more the communication bandwidth becomes the
bottleneck, because the bisection width of these networks increases less quickly
than the number of processors.

For this scenario, hashing yields an even distribution of the data among
the processors and also an even distribution of the communication or routing
load among the links in the network. Several hashing based strategies have been
analyzed in the context of PRAM simulation. For instance, Ranade [17] describes
a hashing based PRAM emulation for the direct butterfly network. He shows that
an N processor PRAM can be emulated by an N processor butterfly network
with slowdown O(log N). This scheme can also be adapted to other networks,
which, e.g., yields an N processor PRAM simulations for the yrN x vrN mesh
with slowdown G(v/N). Note that slowdown S . ~ is optimal for any PRAM
simulation with slackness S on the two-dimensional mesh because of the small
bisection width. That means that the above result cannot be improved for general
PRAM simulations. Nevertheless, it is completely unsatisfying for applications
including locality. This shows that the main drawback of uniform hashing is that
it gives up any locality in the pattern of read and write accesses.

In order to get rid of the slowdown caused by the limited bandwidth, we
have to minimize the communication load by exploiting locality. This can be
done by minimizing the distances from the accessing processors to the accessed
objects. This problem is widely studied in the context of file allocation and
distributed paging, see, e.g., [1,12,2]. A survey on these topics is given in [3].
Clearly, minimizing the distances minimizes the total communication load. Un-
fortunately, it can also increase the congestion, i.e., the maximum number of data
packets which have to cross the same link. The congestion describes the worst
bottleneck of the system. Therefore, it gives a lower bound on the execution
time of a given application. Moreover, several results on store-and-forward- and
wormhole-routing (see e.g. [11,15,4,16]) indicate that this value is also a good
approximation for an upper bound on the execution time of coarse grained ap-
plications with high communication load and low synchronization requirements.
This shows the importance of considering the congestion rather than the total
communication load.

For this scenario, we describe static and dynamic data management strategies
for meshes. These strategies aim to minimize the congestion. The static strategy

49

maps the objects statically to the modules according to some knowledge of the
access pat tern of a given application. The dynamic strategy makes all placement
decisions on-line, i.e., it has no knowledge about the access patterns beforehand.
This strategy combines hashing and caching techniques:in order to exploit local-
ity without producing bottlenecks. We compare the congestion of our strategies
with the congestion of an optimal strategy and show.that i t is close to optimal.

2 S c e n a r i o 1: S y s t e m s w i t h S l o w M e m o r y M o d U l e s

In this section, we focus on data management for data servers consisting of
relatively slow memory modules that are connected by a high-bandwidth network
to ports, communication units or processors. Since the memory modules are
assumed to be the slowest building blocks in the server, ,it is useful that their
number is larger than the number of processors. Therefore, we assume that we
have n processors and a .n memory modules, with a > 2 being a suitable integer.
The a • n memory modules are denoted M~for 1 < .i < a~a~d 1 ~_:j _< n. This
means there are a classes of memory modules each consisting of n modules. In a
round, each processor wants to access one object. The set of shared 'data objects
is denoted by X. These objects can be read and updated by,the, processors,
and a read should always return the value of the lastmpdate': (Of course, it is
also possible that the server has to handle only read:!reqnests.) In. this paper,
we do not care about the contention induced by accesses.to.the same object. In
particular, we assume that either all accesses are~directed ~o' distinct objects, or
that there is some mechanism that is able to combine and split accesses directed

to the same object.
We give a data management strategy that,aims to minimize the contention

without using slackness. The strategy consists of a placement strategy and an

access scheme. The placement strategy maps the objects to the modules. It uses
redundancy, each object is replicated a times. The access scheme determines
which request is satisfied by which module: We will show that our strategy
achieves small contention, i.e., each module has to read or update at most a
small, constant number of objects in each round. Further, we will show that the
access scheme can be computed very ei~iciently. In particular, it can be computed
on-line by the modules and the processors of the data server.

2.1 D e s c r i p t i o n o f t h e S t r a t e g y

The proposed strategy uses several techniques introduced in [9,10,14] in the
context of PRAM simulations on so called, c-collision DMMs. The placement
strategy uses a many hash functions h i , . . . , ha randomly, independently drawn
from some high performance universal class of hash functions H C {h I h :
X -+ { 1 , . . . , n } } . We do not go into details about hash functions and refer
the reader to, e.g., [20,18,8,10] for information about suitable classes of hash
functions. To simplify understanding one should assume that these functions are

50

truly random functions. The i-th copy of an object x E X will be stored in
M ~ for l < i < a . h~(~),

We first explain, why even using just two copies implies the existence of access
pat terns with constant contention, if only one of the two copies of each desired
object has to be accessed. Consider the biparti te access graph H connecting each
of the n requested objects to the two modules holding its copies. As the hash
functions are (pseudo-)random, H is a kind of random graph. I t is easy to verify
that , with high probability, H has a subgraph that contains one edge incident
to each requested object, and has constant degree. This subgraph describes an
access scheme with constant contention. A similar result is true for larger a and
for the case tha t not just one but some number b < a of copies of each requested
object has to be accessed. Note that a = 1 cannot yield constant contention, but
contention ~9(log n~ log log n).

The technique to maintain consistency, i.e., to ensure that a read returns
always the value of the last update, is borrowed from [19]: the major i ty technique.
This technique ensures tha t we are consistent even if we do not always update
all copies. It is sufficient to consider always a majority. Consider an object x
having a different copies in the memory modules. Let b > a/2. Then a processor
tha t wants to read or update x always accesses b out of the a possible copies. If
the processor wants to update x, it updates all b copies and adds a t ime-s tamp
indicating the number of the round. If it wants to read x, it reads one from the
b copies with the latest t ime-stamp. It is easy to see that this technique ensures
consistency. (Our s trategy becomes a little bit easier if our da ta server has to
handle only read accesses, then it is sufficient to access just one of the a copies.)

Finally, we have to describe how to compute a schedule that guarantees tha t
each memory module has to access at most a constant number of copies in
each round. This schedule can be computed efficiently by the processors and
the modules. The computat ion is done in phases. Let c be a suitable constant.
Consider a processor P that want to access object x. Tha t means P wants to
access b out of a copies of x. P sends out requests for all the a copies of x to
the modules storing them. Each module that receives at most c requests answers
with "yes" to each of these request, and each module tha t receives more than
c requests does nothing. (This is the c-collision rule). There are two rules for
skipping requests in a phase: Processor P skips a request to a copy of x if
an earlier request of P to this copy has already been answered with "yes", and
Processor P skips a request to a copy of x if it has already received b many "yes"-
answers for other copies. If each processor got b "yes"-answers for its object, the
computat ion stops. The desired schedule consists of every object accessing the b
copies answered with "yes". This schedule has contention c.

The following theorem illustrates the efficiency of this simple strategy. I t
shows tha t the computat ion of the schedule requires only a very small number of
phases, and in particular, it illustrates the dependencies between the redundancy
a, the number of accessed copies b, and the contention c.

51

T h e o r e m 1 ([14]). Let2 < a < v/i~gn, b < a and2 ~_ c = 0((lo~/i-~/(a-
b)) 1/3) be chosen such that

- (l h a - b l
(: lb) \-d..] <-5 "

Then, with high probability, the above process takes only log log n~ log(c(a-b))+ 3
phases, and it produces a schedule with contention c.

The theorem shows that the above scheme yields very small contention al-
ready with small redundancy. For instance, with redundancy a = 3 and b = 2
the scheme yields contention c < 3, and if the server has only to handle read
accesses, i.e., b = l , then already redundancy a = 2 yields contention c _< 2,
with high probability. Moreover, simulations show that the computation of the
schedule takes usually only 3 phases, for a = 3, b = 2, and n = 1,000,000.

In order to get an idea of why a small number of phases suffice, let us have a
closer look to the access graph H. (We again assume a = 2 and b = 1. Further,
suppose that only a constant fraction of the processors issues a request.) It is
shown in [10] that H consists of connected components of only logarithmic size,
each being almost a tree. Thus, the above computation of the schedule in fact
consists of independent computations on the small trees, which can be shown to
only need O(log(maximum size of the tree)) = O(log log n) phases.

More dedicated analyses of the access graph can be found in [6,5,7]. Using
very complicated algorithmic tricks, strategies are developed that need approx-
imately log log log n phases to compute a schedule with constant contention.

3 S c e n a r i o 2: L o w - B a n d w i d t h S y s t e m s

In this section, we focus on data management in parallel processor systems in
which the processors are connected by a relatively sparse network. In particular,
we consider the n x n mesh M = (If, E). A complete description of this material
and extensions can be found in [13]. Each processor is assumed to have its own
local memory module. The set of objects is denoted by X. We describe a data
management strategy that exploits locality in order to minimize the congestion.

This data management strategy consists of a placement strategy and a rout-
ing strategy. The placement strategy specifies the distribution of the objects
among the modules. In particular, it has to answer the following questions.

- How many copies of an object should be made?
- In which memory modules should these copies be placed?

- Which access is directed to which copy?

We distinguish between strategies that use static and dynamic placement.

- Static Placement: Here we assume that the data management strategy has
some knowledge of the access frequencies of a given application, i.e., the

52

strategy are given two functions hr : V × X ---+/R and hw : V × X ~ /R
that describe the rates of read and write accesses, respectively, from the
nodes in V to the objects in X. Each object can be placed statically in one
or more memory modules. Then a read access to an object can be satisfied
by one of its copies, but a write access has to update all copies.

- Dynamic Placement: Here all placement decisions have to be made on-line,
i.e., there is no knowledge about the access patterns of the application be-
forehand. We assume that an oblivious adversary initiates the read and write
accesses arbitrarily at execution time. ("Oblivious adversary" means that the
adversary is not allowed to react on the decisions of the data management
strategy.) Copies can be migrated, created, and deleted (i.e., invalidated)
during the execution of the application. A read access can be satisfied by
any copy and a write access has to update or invalidate all copies. But at
least one copy must be updated and preserved.

We aim to minimize the congestion. Of course, this value depends also on
the routing. Therefore, we also have to give a routing strategy that minimizes
the congestion. In particular, we have to describe the routing paths from the
accessing processors to the processors that hold the respective objects.

We measure the quality of a data management strategy by comparing the
congestion achieved by this strategy with the congestion achieved by an optimal
strategy, i.e., a strategy that achieves minimal congestion. For a given application

dyn A, the congestion of an optimal strategy is denoted by Vop t~stat ~."~]{A'~ and Cop t (.,4)
in the static and dynamic models, respectively. A data management strategy is
said to be k-competitive in the static or dynamic model if it achieves congestion
at most k [7stat/A~ dyn • Vop t ~ j or k- Cop t (A), respectively, for any application A.

Finding an optimal static placement is NP-hard, which can shown by a
straightforward reduction to an NP-hard routing problem. Therefore, it is in-
teresting to find an approximately optimal solution that can be computed effi-
ciently.

In the dynamic model, an optimal strategy has an advantage over an on-
line algorithm, because it has full knowledge of the dynamic access pattern. For
the competitive analysis, we restrict the optimal strategy slightly: we assume
that it answers the requests in the same order as the analyzed on-line algorithm
does. Note that without this restriction, the optimal strategy could defer write
accesses to later t ime steps in order to save repeated read accesses from the same
processor to the same object.

3.1 D e s c r i p t i o n o f t h e S t r a t e g y

In this section, we present a master algorithm for static and dynamic data man-
agement for the n × n mesh M -- (V, E). Generalizations of this algorithm to
meshes of arbitrary dimension can be found in [13].

We have to describe the distribution of the objects and their copies among
the processors in M and the routing paths between the accessing processors and

53

the respective copies. The main problem is that it is difficult to calculate lower
and upper bounds for the load and congestion induced by a specific placement
of the copies because there are several possible routing paths between every pair
of nodes.

Our basic tool is a randomized but locality preserving embedding of access
trees into the mesh and a simulation of the relatively simple data management
strategies for trees. What makes things much easier in trees is that we do not have
to specify the routing paths in these networks because there is only one simple
path between any pair of nodes. In the following, we describe the embedding
of the access trees and then we describe how to apply the optimal static or
close-to-optimal dynamic tree strategies from [13] to these trees.

For each object x 6 X, define the access tree T(x) to be a complete 4-ary tree
of height log n. The embedding of T(x) in the mesh M is based on a hierarchical
decomposition of M. This decomposition is defined recursively. If n = 1 then
we have reached the end of recursion. Otherwise, we partit ion M into 4 non-

n submeshes. Figure 1 shows an example of this decomposition. overlapping ~ x
We associate a submesh M(v) with each node v of T(x): the mesh M itself is

Partition 0 Partition 1 Partition 2 = log n

Fig. 1. The decomposition of a 4 x 4 mesh.

associated with the root of the tree, and for each node v of T(x) that is not
a leaf, each of the 4 children of v is associated with one of the 4 submeshes of
M(v). We embed the access trees randomly into M, i.e., each interior node v of
T(x) is mapped by a random hash function h(x, v) to one of the processors in
M(v), and each leaf v of T(x) is mapped onto the single processor in M(v). (For
simplicity we assume that these hash flmctions map in a truly random fashion,
i.e., uniformly and independently.)

The remaining description of our data management strategy is very simple:
For object x 6 X, we simulate the static or dynamic tree strategy described
in [13] on access tree T(x). The static tree strategy achieves minimal load on
each tree edge, i.e., it describes an optimal mapping of the objects to the tree
nodes with respect to the read and write frequencies. Moreover, this mapping can
be calculated efficiently and distributed by the nodes of the tree and therefore
also by the processors of the mesh. Also the dynamic tree strategy achieves

54

optimal load for the data transfer, but it requires some amount of distributed
bookkeeping, which increases the load on the edges. However, it is shown that
the load due to bookkeeping messages is relatively small compared to the load
of the data transfer.

For simulating the access trees we have to route messages sent between neigh-
boring access tree nodes along some paths in the mesh. For this, we choose the
paths that are provided by almost every standard router for the mesh, i.e., the
messages are sent along the dimension-by-dimension order path in the mesh.
The following theorem shows that these strategies achieve close-to-optimal con-
gestion.

T h e o r e m 2 ([13]). The static and the dynamic access tree strategies are
O(logn)-competitive, with high probability w.r.t, the random choices o] the hash
]unctions.

Note that this result cannot be improved for the dynamic model, because it
is shown in [13] that for any dynamic strategy there is an application for which
the expected congestion is approximately log n times the optimal congestion.

We now sketch the proof of the above theorem. In order to prove the com-
petitiveness, one has to prove a lower bound on the congestion of the optimal
strategy and an upper bound on the congestion of the access tree strategy.

Consider a complete 4-ary tree T of height log n. This tree is isomorph to the
access trees, and as in the case of the access trees, we associate a submesh M(v)
of M with each node v of T. In particular, each leaf of T is associated with a
submesh of size one, which means that each leaf corresponds to a processor in
M. The bandwidth of an edge of height i in this tree is defined to be 2.2 i, where
the edges incident to the leaves are assumed to have height 1.

For any application and any data management strategy S on the mesh M,
the tree T can simulate the behavior of M according to strategy S. In the
simulation, any message that is sent between two nodes in M is routed along
the unique shortest path between the respective nodes in T. Define the relative
load of an edge e in T to be the number of packets sent along e during the
simulation divided by the bandwidth of e, and define the congestion in T to be
the maximum relative load over all edges in T.

This simulation scheme yields a lower bound on the congestion of the optimal
mesh strategy. Consider a node v of the tree and its associated submesh M(v).
Each packet that crosses the tree edge e between v and its parent during the
simulation has to enter or leave the submesh M(v) of the mesh. As the number
of edges leaving M(v) is at most the bandwidth of e, the congestion in M is
not smaller than the congestion in T. As a consequence, for any application, the
congestion of the optimal tree strategy is at most the congestion of the optimal
mesh strategy.

Similar, it can be shown that the congestion in M is not bigger than ap-
proximately log n times the congestion in T, with high probability. This gives
an upper bound on the congestion of the access tree strategy. Note that the
simulation of the access tree strategy on T (i.e., T simulates the behavior of M

55

according to the access tree strategy) yields the optimal strategy for T. Conse-
quently, the congestion of the access tree strategy is at most approximately log n
times the optimal congestion on T, and therefore, at most approximately log n
times the optimal congestion on M. This gives the theorem.

4 E x p e r i m e n t a l W o r k

The algorithms described in this paper have been developed within the Sonder-
forschungsbereich "Massive Parallelitgt: Algorithmen, Entwurfsmethoden, An-
wendungen" 1 supported by the Deutsche Forschungsgesellschaft (DFG). In par-
ticular, we implement several variants of the presented static and dynamic data
management algorithms for Scenario 2 in the DIVA library 2, in order to demon-
strate tha t the introduced ideas also work well in practice. This library is portable
to any parallel system supporting either Parix or MPI.

Similar strategies to the one introduced for Scenario 1 are implemented within
the ACTS SICMA project 3. The aim of this project is to design a scalable server
for the delivery of images, data and continuous multimedia information and to
demonstrate its efficiency by applying it to a relevant application, the "Virtual
Museum".

R e f e r e n c e s

1. B. Awerbuch, Y. Bartal, and A. Fiat. Competitive distributed file allocation. In
Proe. of the 25th ACM Syrup. on Theory o/Computing (STOC), pages 164-173,
1993.

2. B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for general networks.
In Proc. of the 7th ACM Syrup. on Discrete Algorithms (SODA), pages 574-583,
1996.

3. Y. Bartal. Survey on distributed paging. In Proc. of the Dagstul Workshop on
On-line Algorithms, 1996.

4. P~. Cypher, F. Meyer auf der Heide, C. Scheideler, and B. VScking. Universal
algorithms for store-and-forward and wormhole routing. In Proc. of the 26th ACM
Syrup. on Theory of Computing (STOC), pages 356-365, 1996.

5. A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Improved optimal shared
memory simulations, and the power of reconfiguration. In Proc. of the 3rd Israel
Symposium on Theory of Computing and Systems, pages 11-19, 1995.

6. A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Shared memory simula-
tions with triple-logarithmic delay. In Proc. of the 3rd European Symposium on
Algorithms (ESA), pages 46-59, 1995.

7. A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Contention resolution in
hashing based shared memory simulations. Technical Report tr-rsfb-96-005, Uni-
versity of Paderborn, 1996.

1 For more information see http://www.uni~paderborn.de/sfb376/
2 For more information see http://www.uni-paderborn.de/sfb376/a2/diva.html
3 For more information see http://www.uni-paderborn.de/cs/sicma/

56

8. M. Dietzfelbinger and F. Meyer auf der Heide. Dynamic hashing in real time. In
Proc. of the l~th Annual International Colloquium on Automata, Languages and
Programming, pages 6-19, 1990.

9. M. Dietzfelbinger and F. Meyer auf der Heide. Simple, efficient shared memory
simulations. In Proc. of the 5th ACM Symp. on Parallel Algorithms and Architec-
tures (SPAA), pages 110-119, 1993.

10. R. Karp, M. Luby, and F. Meyer auf der Heide. Efficient pram simulation on a
distributed memory machine. Algorithmiea, 16, 1996.

11. F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao. Randomized routing
and sorting on fixed-connection networks, jalgo, 17:157--205, 1994.

12. C. Lurid, N. Reingold, J. Westbrook, and D. Yan. On-line distributed data man-
agement. In Proe. of the 2nd European Symposium on Algorithms (ESA), 1996.

13. B. Maggs, F. Meyer auf der Heide, B. VScking, and M. Westermann. Exploit-
ing locality for networks of limited bandwidth. Technical Report tr-rsfb-97-042,
University of Paderborn, 1997.

14. F. Meyer auf der Heide, C. Scheideler, and V. Stemann. Exploiting storage redun-
dancy to speed up randomized shared memory simulations. Theoretical Computer
Science, 162:245-281, 1996.

15. F. Meyer auf der Heide and B. VScking. A packet routing protocol for arbitrary
networks. In Proc. of the 12th Symp. on Theoretical Aspects of Computer Science
(STACS), pages 291-302, 1995.

16. R. Ostrovsky and Y. Rabani. Universal O(congestion + dilation + log 1+~ n) local
control packet switching algorithms. In Proc. of the 29th A CM Syrup. on Theory
of Computing (STOC), to appear, 1997.

17. A. G. Ranade. How to emulate shared memory. In Proc. of the 28th IEEE Symp.
on Foundations of Computer Science (FOCS), pages 185-194, 1987.

18. A. Siegel. On universal classes of fast high performance hash functions. In Proc. of
the 30th IEEE Syrup. on Foundations of Computer Science (FOCS), pages 20-25,
1989.

19. E. Upfal and A. Wigderson. How to share memory in a distributed system. Journal
of the ACM, 34:116-127, 1987.

20. M. N. Wegman and J. L. Carter. New classes and applications of hash functions.
In Proc. of the 20th IEEE Syrup. on Foundations of Computer Science (FOCS),
pages 175-182, 1979.

