SEMINAR: MODEL-BASED SOFTWARE ENGINEERING FOR INTELLIGENT TECHNICAL SYSTEMS

Introduction – October 16, 2014

Dr. Claudia Priesterjahn – Group Manager Software Quality
OUTLINE

1. Basic Requirements
2. Preliminary Dates
3. Seminar Guidelines
4. Presentation of the Department
5. Presentation of the Topics
Basic Requirements

- Completion of a seminar thesis in English
 - 20 pages written in LaTeX
 - We provided a template
- Design and run a presentation

- Presentation is 30 min, to be held in a block seminar
 - 20 min for the contents
 - 10 min for discussion

- Reviews
 - Internal peer-review by students
 - also by supervisor
Preliminary Dates

- Th, 16.10., 10:00 a.m.: Topic presentation
- We, 22.10., 10:00 a.m.: Final topic assignment, introduction to scientific working

The following dates have their deadline 23:59 MEZ:
- Su, 23.11.: Outline and literature references (student)
- Su, 14.12.: Seminar thesis for review (student)
- Tu, 16.12.: Assignment of peer reviews (supervisors)
- Su, 21.12.: Completed peer-review (student)
- Su, 18.01.: Presentation for supervisor feedback (student)
- Su, 25.01.: Supervisor feedback: presentation (supervisors)
- Su, 15.02.: Camera-ready version of thesis (student)
- Su, 01.03.: Supervisor feedback: thesis (supervisors)
- Su, 15.03.: Final hand-in of thesis (student)

Presentations (block seminar): 02.02.-06.02.2015
Seminar Guidelines

- Wednesday, 22.10., 10:00 a.m. in ZM1.02-48
 - final topic assignment
 - presentation of seminar guidelines and rules
 - Participation is mandatory

- Topic Selection
 - Doodle poll (options yes, maybe, no)
 - We will try to minimize conflicts
 - Final conflict resolution is First-Come, First-Served
 - Poll will be opened today at 1 p.m. and will be closed Tuesday, October 21st at 4 p.m.
OUTLINE

1. Basic Requirements
2. Preliminary Dates
3. Seminar Guidelines
4. Presentation of the Department
5. Presentation of the Topics
Located in Paderborn, Germany
- Started in March 2011
- 52 Research Associates

Our Challenge:
- Product complexity
- Effectiveness of development methods

Our Competencies:
- **Product Engineering**: Discipline-spanning design of products and production systems (Systems Engineering), virtual prototyping & simulation, MID
- **Control Engineering**: Modeling & simulation of mechatronic systems, controller design, HiL test beds and prototypes
- **Software Engineering**: Processes, methods, and tools for development and quality assurance of embedded software
The Path to Modern Technical Systems of Tomorrow

- **Mechanics**
- **Mechatronics**
- **Intelligent Systems**
 - Swarm Intelligence
 - Industrie 4.0
 - Self-Optimization
 - Cyber-Physical Systems
The Path to Modern Technical Systems of Tomorrow

Product Complexity

Capabilities of Current Design Methods

Mechanics

Mechatronics

Intelligent Systems

Swarm Intelligence

Industrie 4.0

Self-Optimization

Cyber-Physical Systems

Zeit

© Fraunhofer IPT / Heinz Nixdorf Institut
Folie 9
Leading Edge Cluster Competition

- High tech strategy of the German federal government
- Competition between areas for research and technology competence
Intelligent Technical Systems

... interact with the environment and adapt autonomously (adaptive)

... cope with unexpected situations in a highly dynamic environment (robust)

... use knowledge from experience to predict future system states and effects from external impacts (predictive),

... take into account specific user behavior (user-friendly).
Basic Structure of a Mechatronic System

- **Actuators**
- **Sensors**
- **Basic System**
- **Human-Machine-Interface**
- **Environment**

Key:
- Information flow: Light blue arrows
- Energy flow: Orange arrows
- Material flow: Black solid arrows
- Internal unit: Light blue
- External unit: Orange

VDI-Richtlinie 2206

© Fraunhofer IPT / Heinz Nixdorf Institut
Folie 12
From Machenics to Networks of Intelligent Systems (Cyber-Physical Systems)

Communication system

Network

Information Processing
- Cognitive Control
- Associative Control
- Non Cognitive Control

human-machine-interface

communication system

human

environment

actuators

sensors

basic system

power supply

key
- information flow
- energy flow
- material flow

internal unit

external unit

Fraunhofer IPT / Heinz Nixdorf Institut
Folie 13
OUTLINE

1. Basic Requirements
2. Preliminary Dates
3. Seminar Guidelines
4. Presentation of the Department
5. Presentation of the Topics
Data Exchange in Industrial Automation
Supervisor: Anas Anis

- **Problem:**
 - Exchange standards: PLCopen, AutomationML, MTConnect
 - How do they match/differ? Interrelations?

- **Benefits:**
 - Knowledge of data exchange standards
 - Intelligent Networking: consistent data => intelligent reaction

- **Your Task:**
 - Identify the characteristics of each standard.

- **Literature:**
Distributed Control Synthesis
Supervisor: Christian Brenner

- Automatic Synthesis of Distributed Controllers
 - Input: Distributed system, modeled by petri nets
 - Output: Controller automata which ensure that global constraints are fulfilled (e.g. priorities of transitions)

- Goals:
 - Give overview of the approach
 - Identify assumptions and limitations

- Literature:
Modern software systems: complex artifacts, deployed in dynamic context

Requirements change continuously

Requirements traceability is necessary to establish and maintain consistency between software artifacts

Approach: automatic generation and validation of traces between requirements and architecture

Task: Presentation of approach

Selection of Diagnostic Techniques and Instrumentation in a Predictive Maintenance Program (PMP)

Supervisor: Faruk Pasic

- Wrong decision making: economic losses
- PMP advantages in: quality, safety, availability and cost reduction
- FA and AHP used to construct the model
- Approach: model that supports decision making in relation to the selection of diagnostic techniques and instrumentation in PMP

- Task: Presentation of proposed model
Correct Refinement of Real-time Specifications

Supervisor: Jörg Holtmann

- Base of each development project: Requirements specifications
- ITS consist of software, electronics, mechanics
- Development phases
 - **Systems Engineering**: Interdisciplinary design of overall system
 - **Software Engineering**: Design of software part
- **Multiple requirements analysis phases** for systems and software engineering
- **Correct refinement** of requirements specifications also covering real-time aspects?
- **Goal**: Describe concepts of model checker UPPAAL ECDAR w.r.t. refinement checking
Compositional Verification of Real-Time Systems Using ECDAR and MechatronicUML

Supervisor: Stefan Dziwok

- Real-Time Systems are safety-critical → exhaustive verification requires, e.g., model checking
- **Problem:** size of the model leads to state-space explosion
- **Solution Approaches:** ECDAR and MechatronicUML enable a compositional verification
 - Both use the Uppaal Model Checker
- **Your tasks:**
 - Assess ECDAR’s capabilities
 - Model and analyze a new example in the context of overtaking cars
 - Compare it briefly with MechatronicUML
- **Literature:**
Modern software: highly dynamic environment, often unpredictable

May degrade quality of service

Consequently, systems adapt their behavior

Adaptation influences other quality attributes as availability, performance or cost

Approach: find tradeoff between adaptability and quality of service

Task: Presentation of approach + related work

Survey: Real-Time Distribution Middleware
Supervisor: Uwe Pohlmann

- Buffer / QoS requirements are often not considered when transferring messages

Problem:
- Which are (important) Buffer/ QoS requirements?
- How to ensure them?

Your Task:
- Conduct Literature Review and Compare the Features with MechatronicUML Buffer and QoS Assumptions

Literatur:

Survey: Safe Allocation Optimization Methods
Supervisor: Uwe Pohlmann

- Allocation of mechatronic software components are constrained
- Safety requirements must be fulfilled by an allocation

Problem:
- Which constraints / requirements must be fulfilled?
- Which are (good) optimization objectives?
- How to optimize objectives and fulfill all constraints?

Your Task:
- Conduct Literature Review for safe allocation optimization methods

Literatur:
Model-driven Engineering in Automation
Supervisor: Jens Frieben

- Due to the rising complexity of software, model-driven techniques become more and more attractive, even for the conservative automation domain

- Goal of the seminar: read and give an comprehensive overview of the SysML-based modelling technique

- Vogel-Heuser, Birgit; Schütz, Daniel; Frank, Timo; Legat, Christoph: Model-driven engineering of Manufacturing Automation Software Projects – A SysML-based approach. Mechatronics, 2014

- Vogel-Heuser, Birgit; Folmer, Jens; Legat, Christoph: SysML Model of the Pick and Place Unit for Papyrus UML: Scenario Sc11. , Hrsg.: Institute of Automation and Information Systems: Institute of Automation and Information Systems, Technische Universität München, 2014,

- Feldmann, Stefan; Kernschmidt, Konstantin; Vogel-Heuser, Birgit: Combining a SysML-based modeling approach and semantic technologies for analyzing change influences in manufacturing plant models. CIRP CMS, 2014
Vielen Dank für Ihre Aufmerksamkeit

Fraunhofer-Institut für Produktionstechnik
Projektgruppe Entwurfstechnik Mechatronik
Zukunftsmile 1
33102 Paderborn

Telefon: +49 5251 5456-101
Fax: +49 5251 5465-102

mechatronik@ipt.fraunhofer.de
www.ipt.fraunhofer.de/mechatronik