5.3 Symbolic Model Checking
Last week: (Explicit) Model Checking

Benefit:
- Counterexample when a property is not fulfilled

Limitations:
- Not feasible for too large models (state explosion)
- Not feasible for too complex formal properties
Symbolic Model Checking - Idea

- Don’t consider single states but state sets
- Use a compact representation of Kripke structures – BDDs (binary decision diagrams)
- Verification of systems with up to 10^{20} states
Symbolic Model Checking - Overview

- Uses very efficient data structure for representing Kripke structures
- Kripke structures represented as a BDD encoding a boolean formula
 (Don’t confuse these formulas with CTL-formulas!)

- Fast operations on BDDs for
 - Equivalence checking
 - Boolean operations

- MC algorithm works on this **symbolic** representation of the Kripke structure
Binary Decision Diagrams (BDDs)

\[(a \land b) \lor (c \land d)\]
BDD: Definition

- BDD: directed acyclic graph with a unique root node and two kinds of nodes
 - Terminal nodes, either mapped to 0 or 1
 - Non-terminal nodes, mapped to a variable \(v \) and has two successor nodes
Properties/Advantages of BDDs

1. Canonical representation of boolean functions, i.e. 2 boolean functions are equivalent iff their representations are equivalent (given the same variable order)

2. Efficient basic operations (intersection, union, comparison, complement, etc.)

3. Not restricted to a specific “family” of automata, applicable to all kinds of finite state systems
BDDs for Kripke structures

Reminder: A Kripke Structure is a 5-Tupel (AP, S, L, T, S_0):
- AP: Set of atomic propositions
- S: finite set of states
- $L: S \rightarrow \mathcal{P}(AP)$, labels
- $T \subseteq S \times S$, left-total transition relation
- S_0: set of initial states

Basic Idea:
- Encode each of the components (states, transitions, atomic propositions) as a boolean function.
- Represent boolean functions as BDDs.

Boolean function:
- Maps k bits to one bit
- e.g. $k = 2$: $f: \{0, 1\}^2 \rightarrow \{0, 1\}$, $f(x_0, x_1) = (\neg x_0 \land \neg x_1) \lor (\neg x_0 \land x_1) \lor (x_0 \land \neg x_1)$
- $f(0,0) = 1$, $f(0,1) = 1$, $f(1,0) = 1$, but $f(1,1) = 0$
Encoding of states

1st step: Encode states as bit-strings e.g.
Encoding of states

1st step: Encode states as bit-strings e.g.

- s_0: 00
Encoding of states

1st step: Encode states as bit-strings e.g.

- s_0: 00

2nd step: Construct boolean function that is true (maps to 1) iff the bit-string passed as an argument represents one of the states, i.e.
Encoding of states

1st step: Encode states as bit-strings e.g.

- s_0: 00

2nd step: Construct boolean function that is true (maps to 1) iff the bit-string passed as an argument represents one of the states, i.e.

$$f_S(x_0, x_1) = (\neg x_0 \land \neg x_1)$$

with S_0
Encoding of states

1st step: Encode states as bit-strings e.g.

- \(s_0 \): 00
- \(s_1 \): 01
- \(s_2 \): 10

2nd step: Construct boolean function that is true (maps to 1) iff the bit-string passed as an argument represents one of the states, i.e.

\[
f_S(x_0, x_1) = (\neg x_0 \land \neg x_1) \lor (\neg x_0 \land x_1) \lor (x_0 \land \neg x_1)
\]

\(S_0 \) \(S_1 \) \(S_2 \)
Encoding of initial states

1st step: Use encoding of states also for initial states:

- s_0: 00

2nd step: Construct boolean function that is true (maps to 1) iff the bit-string passed as an argument represents one of the initial states, i.e.

$$f_{S_0}(x_0, x_1) = (\neg x_0 \land \neg x_1)$$

\[s_0\]
1st step: For each transition \((s_i, s_j)\) concatenate the bit-string of \(s_i\) with the bit-string of \(s_j\), i.e.
1st step: For each transition \((s_i, s_j)\) concatenate the bit-string of \(s_i\) with the bit-string of \(s_j\), i.e.

- \((s_0, s_1): 0001\)
Encoding of transitions

1st step: For each transition (s_i, s_j) concatenate the bit-string of s_i with the bit-string of s_j, i.e.

- $(s_0, s_1): 0001$

2nd step: Construct boolean function that is true iff the bit-string passed as an argument represents one of the transitions, i.e.
Encoding of transitions

1st step: For each transition \((s_i, s_j)\) concatenate the bit-string of \(s_i\) with the bit-string of \(s_j\), i.e.

- \((s_0, s_1)\): 0001

2nd step: Construct boolean function that is true iff the bit-string passed as an argument represents one of the transitions, i.e.

\[
f_T (x_0, x_1, x'_0, x'_1) = (\neg x_0 \land \neg x_1 \land \neg x'_0 \land x'_1)
\]
Encoding of transitions

1st step: For each transition \((s_i, s_j)\) concatenate the bit-string of \(s_i\) with the bit-string of \(s_j\), i.e.

- \((s_0, s_1): 0001\)
- \((s_1, s_0): 0100\)
- \((s_1, s_2): 0110\)
- \((s_2, s_2): 1010\)

2nd step: Construct boolean function that is true iff the bit-string passed as an argument represents one of the transitions, i.e.

\[
f_T(x_0, x_1, x'_0, x'_1) = (\neg x_0 \land \neg x_1 \land \neg x'_0 \land x'_1) \lor (\neg x_0 \land x_1 \land \neg x'_0 \land \neg x'_1) \lor (\neg x_0 \land x_1 \land x'_0 \land \neg x'_1) \lor (x_0 \land \neg x_1 \land x'_0 \land \neg x'_1)
\]

- \((s_0, s_1)\)
- \((s_1, s_0)\)
- \((s_1, s_2)\)
- \((s_2, s_2)\)
1st step: For each atomic proposition r collect bit encodings of states in which r holds:
Encoding of atomic propositions and labeling function L

1st step: For each atomic proposition r collect bit encodings of states in which r holds:

- p: 00, 01 (representing s_0, s_1)
Encoding of atomic propositions and labeling function L

1st step: For each atomic proposition r collect bit encodings of states in which r holds:

- p: 00, 01 (representing s_0, s_1)

2nd step: Construct a boolean function f_r that is true iff the bit-string passed as an argument represents one of the states in which r holds, i.e.
Encoding of atomic propositions and labeling function L

1st step: For each atomic proposition r collect bit encodings of states in which r holds:

- p: 00, 01 (representing s_0, s_1)

2nd step: Construct a boolean function f_r that is true iff the bit-string passed as an argument represents one of the states in which r holds, i.e.

$$f_p(x_0, x_1) = \left(\neg x_0 \land \neg x_1 \right) \lor \left(\neg x_0 \land x_1 \right)$$
1st step: For each atomic proposition r collect bit encodings of states in which r holds:

- p: 00, 01 (representing s₀, s₁)
- q: 00, 10 (representing s₀, s₂)

2nd step: Construct a boolean function f_r that is true iff the bit-string passed as an argument represents one of the states in which r holds, i.e.

\[
\begin{align*}
 f_p(x_0, x_1) &= (\neg x_0 \land \neg x_1) \lor (\neg x_0 \land x_1) \\
 f_q(x_0, x_1) &= (\neg x_0 \land \neg x_1) \lor (x_0 \land \neg x_1)
\end{align*}
\]
Symbolic Model Checking Algorithm

- Returns a BDD which represents the set of all states that satisfy f

function check(CTL formula φ) : BDD
switch
 φ is an atomic proposition p: return f_p
 φ = ¬g return ApplyNot(check(g))
 φ = g ∨ h return ApplyOr(check(g) ∨ check(h))
 φ = EX g return CheckEX(check(g))
 φ = E[gUh] return CheckEU(check(g), check(h))
 φ = EG g return CheckEG(check(g))
end switch
end check

- Computation based on fixpoint computation (lecture Model Checking)
Symbolic Model Checking Algorithm: Visualization

- Example: \(\text{EX} (p \lor \text{EG} \neg q) \)
- Function check() realizes recursion into the tree until leaves are reached
- From the leaves on the BDD \(f_q \) of a sub-formula \(q \) is propagated up the tree for further processing
- CheckEX() and CheckEU() use \(f_T \) (BDD of transition relation) to reach successor states of a state \(s \)

\[
\begin{align*}
\text{CheckEX}(f_{p \lor \text{EG} \neg q}) &= f_{\text{EX}(p \lor \text{EG} \neg q)} \\
\text{CheckEG}(f_{\neg q}) &= f_{\text{EG} \neg q} \\
\text{ApplyNot}(f_q) &= f_{\neg q} \\
\text{ApplyOr}(f_p, f_{\text{EG} \neg q}) &= f_p \lor \text{EG} \neg q \\
\text{CheckEX}(f_p \lor \text{EG} \neg q) &= f_{\text{EX}(p \lor \text{EG} \neg q)} \\
\end{align*}
\]
Reduced Ordered BDDs

- Canonical representation
- Variable ordering the same on all paths from root to leaves
- No isomorphic subtrees, no redundant nodes
Reduced Ordered BDDs - Reduction

\[(a \land b) \lor (c \land d)\]
Order: \(a, b, c, d\)
Reduced Ordered BDDs - Reduction

\[(a \land b) \lor (c \land d)\]

Order: a, b, c, d

1. Merge 0 and 1 nodes.
Reduced Ordered BDDs - Reduction

(a \land b) \lor (c \land d)
Order: a, b, c, d

1. Merge 0 and 1 nodes.
2. Merge d node (due to same output)
Reduced Ordered BDDs - Reduction

\[(a \land b) \lor (c \land d)\]
Order: a, b, c, d

1. Merge 0 and 1 nodes.
2. Merge d nodes (due to same output)
3. Merge c nodes (due to same output)
Reduced Ordered BDDs - Reduction

\[(a \land b) \lor (c \land d)\]

Order: a, b, c, d

1. Merge 0 and 1 nodes.
2. Merge d nodes (due to same output)
3. Merge c nodes (due to same output)
4. Delete b node (no real alternative)
Order of predicates

- Size of ROBDD depends on order of the predicates

\[(a \land b) \lor (c \land d)\]

Order: \(a, b, c, d\)

Order: \(a, c, b, d\)
ROBDDs

- ROBDD (Reduced Ordered BDD): BDD
 - With a fixed variable order, i.e. variables occur in the same order on all paths
 - Reduction of the binary diagram until no more reduction rules can be applied
ROBDD reduction rules

- Reduction rules
 1. Delete duplicate leafs
 2. Find and merge identical sub trees
 3. Remove redundant inner nodes. A node is redundant if there is no real decision possible, i.e. both outgoing edges have the same target node.
Properties/Advantages of ROBDDs

1. Canonical representation of boolean functions, i.e. 2 boolean functions are equivalent iff their representations are equivalent (given the same variable order)

2. Efficient basic operations (intersection, union, comparison, complement, etc.)

3. Not restricted to a specific “family” of automata, applicable to all kinds of finite state systems
References

- **Model Checking.** E.Clarke, O.Grumberg, D.Peled. MIT Press

- **Model Checking.** Vorlesung bei H.Wehrheim