5. Model Checking
Verification?

„Testing can only show the presence of errors never their absence“
(Edsger Dijkstra)
Model Checking

- What is Model Checking? Two answers:
 - … an automated proof method
 - … a precise system analysis tool

- A rigorous proof that the program does what you say it should do

- This requires:
 - Formal semantics: Kripke structure
 - Formal specification: Temporal logic
 - Method: Manual proof (up to 1981); today model checking!

“Reused” slides (partially modified/combined) from:
[Dwyer2002s] Matthew Dwyer. Kansas State University, USA Software Model Checking Tutorial
FSE’02 – Charleston, South Carolina – Nov. 19, 2002
Model Checking

- Proof of $M \models \varphi$
- Question: „Is the system a model of the formula?“
- Model Checking algorithm searches the whole state space of the system
 → State space needs to be finite
Input-Output Patterns

- **Reactive systems:**
 - Parallelism, distribution
 - Interaction with their environment, no termination, hence Hoare Style proofs do not work
 - High complexity, safety critical
Model Checking

UML-Diagram (e.g. StateChart)

Kripke-structure

Specification

It is always true...
It is never true...

Temporal logic formula (e.g. CTL, LTL, …)

Model Checker

Code Generation & Test

Counter example
Kripke Structure

- Defines a state based transition graph, which specifies the behavior of a reactive system

\[
\text{Kripke Structure } = (\text{AP}, \text{S}, \text{L}, \text{T}, \text{S}_0)
\]

- \text{AP: Set of atomic propositions}
- \text{S: finite set of states}
- \text{L: } \text{S} \rightarrow \mathcal{P}(\text{AP}), \text{labels}
- \text{T } \subseteq \text{S x S, transitions, is left-total (every node is source node for at least one transition)}
- \text{S}_0: \text{set of initial states}

\text{AP} = \{p_0, p_1, p_2\}
\text{S} = \{s_0, s_1, s_2, s_3, s_4\}
\text{L} = \{s_0 \rightarrow \{p_0\}, s_1 \rightarrow \{p_1\}, \{s_2\} \rightarrow \{p_0\}, s_3 \rightarrow \{p_2\}, s_4 \rightarrow \{p_1, p_2\}\}
\text{T} = \{(s_0, s_1), (s_1, s_0), (s_1, s_2), (s_1, s_3), (s_2, s_3), (s_3, s_0), (s_3, s_4), (s_4, s_4)\}
\text{S}_0 = \{s_0\}
Kripke Structure \rightarrow Path Tree
Microwave Example

AP := \{\text{start, close, error, heat}\}
Microwave Example

Properties:
- There is a state where MW heats
- The MW shall not heat if an error occurred
- There is a state directly following the initial state where the door is closed

AP := \{start, close, error, heat\}
Computation Tree Logic (CTL)

- CTL-Formula consist of:
 - Atomic propositions (predicates on states)
 - Boolean connectives \land, \lor, \neg, \Rightarrow
 - Additional CTL-operators of the form:
 - path quantifier + temporal operator

- Path Quantifier:
 - A: for all paths holds…
 - E: there is a path for which holds…

- Temporal Operator:
 - X: Next
 - F: Future
 - G: Global
 - U: Until
Computation Tree Logic (CTL)

- Valid CTL-formulae are defined recursively as follows:

 - Every atomic proposition \((p, q, \ldots)\) is a valid CTL-Formula.

 - Let \(\phi_1, \phi_2\) be CTL-formulae then the following formulae are valid CTL-formulae:

 \[
 \begin{align*}
 &\neg \phi_1, \\
 &\phi_1 \land \phi_2, \\
 &\phi_1 \lor \phi_2, \\
 &\phi_1 \implies \phi_2, \\
 &\text{EX } \phi_1, \\
 &\text{EF } \phi_1, \\
 &\text{EG } \phi_1, \\
 &\text{E}[\phi_1 \mathbin{U} \phi_2], \\
 &\text{AX } \phi_1, \\
 &\text{AF } \phi_1, \\
 &\text{AG } \phi_1, \\
 &\text{A}[\phi_1 \mathbin{U} \phi_2].
 \end{align*}
 \]

- Examples: \(p, \neg p, p \land q, \text{EF } p, \text{AG } q, \neg \text{AG } q, \text{AG } (\text{EF } \neg p), (\text{EX } p) \lor (\text{AG } q), \text{A}[(\text{EF } p) \mathbin{U} q]\)
CTL-Operators Examples

"There is a path where p holds in the next state."

\[\text{EX } p \]

"There is a path where p holds Until q holds."

\[\text{E[pUq]} \]

"For all paths p holds at some point in the Future."

\[\text{AF } p \]

"For all paths p holds Globally (in every state)."

\[\text{AG } p \]

CTL: A path quantifier in front of every temporal operator
Microwave Example

Properties:

- There is a state where MW heats
 - \(\text{EF} \) (heat)

- The MW shall not heat if an error occurred
 - \(\text{AG} \neg (\text{error} \land \text{heat}) \)

- There is a state directly following the initial state where the door is closed
 - \(\text{EX} \) (close)

\[\text{AP} := \{\text{start, close, error, heat}\} \]
State Explosion Problem

- Problem: number of states of a realistic system usually huge
- The number of states of a system is exponential in its number of variables
 → Construction of the whole state space not always feasible (too little system memory)
- Solution: try to avoid explicit construction of state space (Later in this course)
Software Model Checking: Reality Check

- Specifications are **partial**
 - They do not define complete functional correctness
 - Focus on crucial properties

- Cost of checking is **enormous**
 - Must approximate
 - What kinds of approximation are useful?

[Dwyer2002s]
Software Model Checking - Approximation

Software model

Specification

□(Φ → ◇ Ω)

Approximation

Model Checker

No false positives

OK

No false negatives

Error trace

Line 5: ...
Line 12: ...
Line 15: ...
Line 21: ...
Line 25: ...
Line 27: ...
...
Line 41: ...
Line 47: ...

[Dwyer2002s]
Model Construction Problem

Semantic gap:

- **Programming Languages** with *methods*, *inheritance*, *dynamic creation*, *exceptions*, etc.

- **Model Description Languages** are only *automata*

Program:

```c
void add(Object o) {
    buffer[head] = o;
    head = (head+1)%size;
}

Object take() {
    ...
    tail=(tail+1)%size;
    return buffer[tail];
}
```

Model Description:

```
Model Checker
```

Gap:

[Dwyer2002s]
Output Interpretation Problem

- Raw error trace may be 1000’s of steps long
- Must map line listing onto model description
- Mapping to source is made difficult by
 - Semantic gap & clever encodings of complex features
 - multiple optimizations and transformations

```
void add(Object o) {
    buffer[head] = o;
    head = (head+1)%size;
}

Object take() {
    ...
    tail=(tail+1)%size;
    return buffer[tail];
}
```
Why is model-checking software difficult?

- Problems using existing checkers:
 - Model construction
 - Property specification
 - State explosion
 - Output interpretation

[Dwyer2002s]
Summary

- Instead of a „complete“ specification use only one that consists of relevant properties (e.g., for safety)
- Usually only restricted notions for formal models
 - Finite automata (or similar restricted models)
- Often restricted notions for formal properties
 - Propositional logic
 - Temporal logic (Model-Checking)

- Benefit:
 - Counterexample when a property is not fulfilled
- Limitations:
 - Not feasible for too large models (state explosion)
 - Not feasible for too complex formal properties
5.1 CTL Model Checking
Microwave Example

Properties:
- There is a state where MW heats
 - \(\text{EF} \) (heat)
- The MW shall not heat if an error occurred
 - \(\text{AG} \neg (\text{error} \land \text{heat}) \)
- There is a state directly following the initial state where the door is closed
 - \(\text{EX} \) (close)

\[\text{AP} := \{\text{start, close, error, heat}\} \]
CTL-Formula Reduction

- By EX, EG and EU all other properties can be expressed, as e.g. in
 - $\text{AX } f = \neg \text{EX } (\neg f)$
 - $\text{EF } f = \text{E } (\text{true } U f)$
 - $\text{AG } f = \neg \text{EF } (\neg f)$
 - $\text{AF } f = \neg \text{EG } (\neg f)$
 - $\text{A } (f U g) = \neg \text{E } (\neg g U (\neg f \land \neg g)) \land \neg \text{EG } \neg g$
 $= \neg (\text{E } (\neg g U (\neg f \lor g)) \lor \text{EG } \neg g)$

- In the following only EX, EG, EU, \neg and \lor
Model Checking Algorithm (1/2)

- Globally defined Kripke Structure,
- label(s) is the set of all formulas which hold in a state s

- Iterative algorithm: In the i-th run check all sub-formulae of height i in the syntax tree of the formula
 - ensures that no formula is examined before its sub-formulae are examined

- Example: EX (p ∨ EG ¬ q)

```java
function verify (Formula f) : boolean
    for i = 0 .. h do
        for all sub-formulae g of f of height i do
            check (g);
        end for all;
    end for;
    return ∀ s ∈ S₀: f ∈ label(s)
end verify;
```

(h is height of the syntax tree of f)
Model Checking Algorithm (2/2)

```plaintext
function check (Formula f);
    switch
        case f ∈ AP  checkAP(f)  // label states with their atomic propositions
        case f = ¬g checkNegation(g)  // check negations
        case f = g ∨ h checkDisjunction(g, h)  // check disjunction
        case f = EX g checkEX(g)
        case f = EG g checkEG(g)
        case f = E[gUh] checkEU(g, h)
    end switch
end check;
```
Function checkAP(g) marks a state s with the atomic proposition g if g holds in s

```plaintext
function checkAP(g)
    for all s ∈ S do
        if g ∈ label(s) then
            label(s) := label(s) ∪ {g}
        end if
    end for
end checkAP;
```
Model Checking Algorithm (2/2)

```plaintext
function check (Formula f);
switch
  case f ∈ AP    checkAP(f)          // label states with their atomic propositions
  case f = ¬g    checkNegation(g)    // check negations
  case f = g ∨ h checkDisjunction(g, h) // check disjunction
  case f = EX g  checkEX(g)
  case f = EG g  checkEG(g)
  case f = E[gUh] checkEU(g, h)
end switch
end check;
```
Function checkNegation(g) marks a state s with \(\neg g \) if the sub-formula g does not hold in s

```
function checkNegation(g)
    for all s \( \in S \) do
        if g \( \not\in \) label(s) then
            label(s) := label(s) \cup \{ \neg g \}
        end labelStates;
end function;
```
Model Checking Algorithm (2/2)

```plaintext
function check (Formula f);
    switch
        case f ∈ AP  checkAP(f)  // label states with their atomic propositions
        case f = ¬g   checkNegation(g)  // check negations
        case f = g ∨ h checkDisjunction(g, h)  // check disjunction
        case f = EX g  checkEX(g)
        case f = EG g  checkEG(g)
        case f = E[gU h] checkEU(g, h)
    end switch
end check;
```
checkDisjunction

- Function checkDisjunction\((g, h)\) marks all states for which \(g\) or \(h\) holds

```plaintext
function checkDisjunction(g, h)
    for all \(s \in S\) do
        if \(g \in \text{label}(s)\) or \(h \in \text{label}(s)\) then
            \(\text{label}(s) := \text{label}(s) \cup \{g \lor h\}\)
        end labelStates;
end function
```
function check (Formula f);
 switch

 case f \in AP checkAP(f) // label states with their atomic propositions
 case f = \neg g checkNegation(g) // check negations
 case f = g \lor h checkDisjunction(g, h) // check disjunction
 case f = \text{EX} g checkEX(g)
 case f = \text{EG} g checkEG(g)
 case f = E[g\cup h] checkEU(g, h)

 end switch
end check;
CheckEX

- Marks all states for which EX(g) holds
- Is there a path for which g holds in the next state?

function checkEX(g)

\[S_1 := \{ s \mid g \in \text{label}(s) \} \]

for all \((s_1, s_2) \in T, s_2 \in S_1\) **do**

\[\text{label}(s_1) := \text{label}(s_1) \cup \{\text{EX } g\} \]

end checkEX;

- Remark: \(T \subseteq S \times S\) is left-total
Model Checking Algorithm (2/2)

function check (Formula f);
 switch
 case f ∈ AP checkAP(f) // label states with their atomic propositions
 case f = ¬g checkNegation(g) // check negations
 case f = g ∨ h checkDisjunction(g, h) // check disjunction
 case f = EX g checkEX(g)
 case f = EG g checkEG(g)
 case f = E[gUh] checkEU(g, h)
 end switch
end check;
Strongly Connected Component

- **Given**: directed Graph G
- **Strongly Connected Component C**:
 - Subgraph of G
 - Any node of C is reachable by a (directed) path from any other node in C
- **Non trivial Strongly Connected Component**
 - C is a Strongly Connected Component
 - C has either more than one node or one node with a self referencing edge
Example

Trivial SCC

Non trivial SCC

Non trivial SCC
CheckEG: Example

- Marks all states for which EG (f) holds
- Is there a path for which f always holds?
CheckEG: Example

- $M_0 = \{S_3, S_4, S_5\}$
- $M_1 = \{S_3, S_4, S_5, S_2\}$
- $M_2 = \{S_3, S_4, S_5, S_2, S_1\}$
CheckEG

```plaintext
function checkEG(f)
    \( S_1 := \{ s \mid f \in \text{label}(s) \} \)
    SCC := \{ C \mid \text{nontrivial SCC of } S_1 \}
    S_2 := \bigcup_{c \in \text{SCC}} \{ s \mid s \in C \}
    \text{for all } s \in S_2 \text{ do } \text{label}(s) := \text{label}(s) \cup \{ \text{EG f} \} \text{ end for all }
    \text{while } S_2 \neq \emptyset \text{ do }
        \text{choose } s \in S_2
        S_2 := S_2 \setminus \{ s \}
        \text{for all } (s', s) \in T, s' \in S_1 \text{ do }
            \text{if } \text{EG f} \not\in \text{label}(s') \text{ then }
                \text{label}(s') := \text{label}(s') \cup \{ \text{EG f} \}
                S_2 := S_2 \cup \{ s' \}
            \text{end if }
        \text{end for all }
    \text{end while }
end checkEG
```
function check (Formula f);
 switch
 case f \in AP checkAP(f) // label states with their atomic propositions
 case f = \negg checkNegation(g) // check negations
 case f = g \lor h checkDisjunction(g, h) // check disjunction
 case f = EX g checkEX(g)
 case f = EG g checkEG(g)
 case f = E[gUh] checkEU(g, h)
 end switch
end check;
CheckEU

- Marks all states for which $E[fUg]$ holds
- $\text{CheckEU}(f,g)$: is there a path where f holds until g holds

- $M_0 = \{S4, S5\}$
- $M_1 = \{S4, S5, S2\}$
- $M_2 = \{S4, S5, S2, S1\}$
function CheckEU(f, g)
 \(S_1 := \{ s \mid g \in \text{label}(s) \} \)
 for all \(s \in S_1 \) do
 \(\text{label}(s) := \text{label}(s) \cup \{ E[fUg] \} \) end for all
 while \(S_1 \neq \emptyset \)
 choose \(s \in S_1 \)
 \(S_1 := S_1 \setminus \{ s \} \)
 for all \((s', s) \in T \) do
 if \(E[fUg] \notin \text{label}(s') \) and \(f \in \text{label}(s') \) then
 \(\text{label}(s') := \text{label}(s') \cup \{ E[fUg] \} \)
 \(S_1 := S_1 \cup \{ s' \} \)
 end if
 end for all
 end while
end checkEU