C++ PROGRAMMING

Lecture 11

Secure Software Engineering Group
Philipp Dominik Schubert
Final lecture and introduction to the final project

- Static Program Analysis – Friday 09.07.2021
- Introduction to the Final Project – Friday 16.07.2021
CONTENTS

1. High performance computing
2. High performance computing in C++
3. Example: matrix multiplication
 i. Important compiler flags
 ii. How to help the compiler
 iii. What the compiler can do for you
Why should I care?

- Great demand for computation power
- Simulations
 - Weather forecast
 - Driving simulation
 - Drug design
 - Computer graphics
 - Power plants
- More computation power ➔ more precise simulations
- Computer can achieve results much cheaper
- Parallel computation
- Implementation of highly efficient programs is time consuming and nerve wracking
Hard physical limits

- Clock rate is limited
- Power consumption
- Heat
- Signals can only travel at the speed of light
 - 3 GHz processor \Rightarrow time for one cycle 0,33 ns
 - Maximal distance a signal can travel in 0,33 ns:
 - Upper limit is speed of light in the vacuum: $0,3 \cdot 10^9 \frac{m}{s}$
 - $0,33 \cdot 10^{-9} s \cdot 0,3 \cdot 10^9 \frac{m}{s} \approx 10 \, cm$
 - Current chips: 200 – 400 mm^2
 - A signal must travel between two arbitrary position within one cycle
Processor development

- Moore's law
 - Complexity of integrated circuits doubles every ~year
 - Number of transistors
 - Clock rate is limited, use additional transistors for
 - Processor cores
 - Redundant ALU/FPU
 - Registers
 - Cache memory
 - Build specialized hardware e.g. GPU’s
 - Implement programs in CUDA or OpenCL
Four levels of parallelism

1. Parallelism on bit-level
 - Early computers used a small number of bits for registers (word size)
 - Today: 32 bit, even more common: 64 bit architectures

2. Parallelism through pipelining
 - Divide instruction into sub-tasks (e.g. fetch, decode, execute, write back)

3. Parallelism through multiple function units (multiple ALUs, FPUs, load/store units, jump units)

4. Parallelism on process- or thread-level
 - Use a programming language that supports parallel execution
 - Help the compiler to produce faster code by specifying multiple execution threads
 - Usually our last resort, since pipelining has already reached its limits

In general:
- Modern CPUs and GPUs become more and more complex
- Only very few companies can manufacture them at all!
Flynn’s taxonomy

- Concepts and corresponding machines
 1. SISD
 - Classical von Neumann machine
 2. MISD
 - Makes no sense
 3. SIMD
 - Modern CPUs and Graphics processing units (GPUs)
 4. MIMD
 - Processors that can work asynchronously
Parallel processing

- Problems have to be decomposed in smaller independent computations
 - These can be computed on different processor cores
- But: data- and control-flow is not completely decoupled
- Correct execution of program has to be ensured by synchronization and information exchange
- Shared- and distributed memory space
 - **Shared memory parallelization**
 - Variables can be accessed and used for information exchange
 - Use different execution threads
 - Distributed memory parallelization
 - Information exchange through explicit message passing
 - Message-passing programming
 - Use different processes
Parallel processing

- Evaluation of parallel programs expressible in terms of
 - Speed-up
 - Efficiency (time, memory, …)
- Granularity is the average size of a subtask
 - Higher granularity is better
- Decision in which order a computation takes place is called scheduling
Problems with von Neumann’s concept

- What is wrong with our modern machines?
 1. Sequential execution of a program
 2. Every implementation of a Turing- or Random-access-machine has to deal with finite memory
 3. Memory is bottleneck: every processor cycle is much faster than a memory cycle
 4. Universal computation leads to inefficient execution of application programs
 5. Finite representation of values
 6. Reliability
 7. Input / output operation is done through processor, processor is blocked
 8. Computer security was never considered (only specialists could handle a machine anyway)
Does it pay off? Amdahl’s law

- Runtime of parallel program
 - \(T_p(n) \geq f \cdot T'(n) + \frac{(1-f) \cdot T'(n)}{p} \)
 - Sequential part + parallel part

- Maximal speed-up is then
 - \(S_p(n) = \frac{T'(n)}{T_p(n)} = \frac{T'(n)}{f \cdot T'(n) + \frac{(1-f) \cdot T'(n)}{p}} = \frac{1}{f + \frac{(1-f)}{p}} \)
 - If \(f > 0 \) and \(p \to \infty \)
 - \(S_p(n) \leq \frac{1}{f} \)

![Amdahl's Law Diagram](http://arma.sourceforge.net/img/armadillo_logo.png)
Gustafson’s law

- Amdahl’s law revisited
 \[S_p(n) = \frac{1}{f + \frac{(1-f)}{p}} = \frac{1}{f_1} + \frac{1-p \cdot (1-f_1) + f_1}{p \cdot (1-f_1) + f_1} \]
- Sequential part of program can be reduced
 - Through larger problem size
 - Through larger number of processors

- When to use what law?
 - Problem does not scale
 - Amdahl
 - Problem is perfectly scalable
 - Gustafson
How to?

- How to implement an efficient algorithm?
 - Understand the algorithm in detail
 - Inspect algorithm
 - Understand your hardware
 - Check state-of-the-art techniques
 - Plan first, then implement!

- Still too slow?
 - Approximate solution
 - E.g. genetic algorithms
 - Guess a solution
 - Try to optimize according to some fitness function
 - Maybe a good solution is better than no solution at all
std::thread

- A data type that creates a separate execution thread (using shared memory)
  ```cpp
template< typename Function, typename... Args >
explicit thread( Function&& f, Args&&... args );
```

- A variable of type thread has to be constructed explicitly (no implicit conversion allowed)
- `std::thread`'s constructor receives a ‘callable’ and some optional arguments
- Callable might be a ...
 - Function pointer
 - Function object
 - Lambda function
 - … anything that can be “called”
- A thread itself does not care about the return value
 - Cannot return data directly

- `std::jthread`
 - same general behavior as `std::thread`
 - rejoins automatically on destruction
 - can be cancelled/stopped in certain situations
std::thread

#include <iostream>
#include <thread>

class callable {
private:
 int i;
 int j;
public:
 callable(int a, int b) : i(a), j(b) {}
 void operator() () {
 std::cout << "t1: " << i + j << \n';
 }
};

void func(int a, int b) {
 std::cout << "t2: " << a * b << \n';
}

int main() {
 unsigned int n =
 std::thread::hardware_concurrency();
 std::cout << n << "hardware threads possible\n";
 std::thread t1(callable(10, 20));
 std::thread t2(func, 10, 20);
 std::thread t3([]() { cout << "t3: "
 << 20 / 10 << \n'; });
 t1.join();
 t2.join();
 t3.join();
 return 0;
}
std::thread

- Threads cannot return data directly
 - Use shared memory (global variables) for storing results
 - communication between threads
- Try to minimize usage of global variables

```cpp
#include <array>
#include <iostream>
#include <thread>
#include <vector>

std::array<int, 4> results;
void power(int id, int a) {
    results[id] = a*a;
}

int main() {
    std::vector<std::thread> threads;
    for (int i = 0; i < results.size(); ++i) {
        threads.push_back(std::thread(power, i, i+1));
    }
    for (auto& t : threads) { t.join(); }
    for (auto result : results) {
        std::cout << result << 'n';
    }
    return 0;
}
```
What happens if two or more threads use a global variable at the same time?
- "Race condition"
 - You never ever want a race condition!
 - Hard to find and to fix
 - Even worse: not being aware of a race condition
- Lock critical code (e.g. with a mutex lock)
- Only one thread is allowed to execute locked code

```cpp
#include <iostream>
#include <thread>
#include <vector>
#include <mutex>

std::mutex results_mutex;
std::vector<int> results;

void power(int a) {
    int b = a * a;
    std::lock_guard<std::mutex> guard(results_mutex);
    results.push_back(b);
}

int main() {
    std::vector<std::thread> threads;
    for (int i = 1; i < 10; ++i) {
        threads.push_back(std::thread(power, i));
    }
    for (auto & t : threads) { t.join(); }
    for (auto i : results) {
        cout << i << '\n';
    }
    return 0;
}
```
std::atomic

- If critical global data is “small” or a primitive
 - std::atomic can be used instead of a mutex
 - Makes accessing a value (read and write) atomic
- “Lock-free programming”

```cpp
#include <iostream>
#include <thread>
#include <vector>
#include <atomic>

std::atomic<int> global_int(0);
void inc_global() { ++global_int; }
int main() {
    std::vector<std::thread> threads;
    for (int i = 0; i < 10; ++i) {
        threads.push_back(std::thread(inc_global));
    }
    for (auto& t : threads) { t.join(); }
    std::cout << global_int << '\n';
    return 0;
}
```
std::packaged_task

- Threads cannot return data directly
- Use a `packaged_task`
 - It uses a future to return a value
 - `future` is a very useful type
- How?
 - Create a `packaged_task`
 - Get future from it
 - Execute task
 - Obtain result in the future
- This avoids using global variables!

```cpp
#include <iostream>
#include <thread>
#include <future>
#include <vector>

int func(int a, int b) { return a * b; }

int main() {
    std::packaged_task<int(int, int)> task(func);
    std::future<int> result = task.get_future();
    std::thread t1(std::move(task), 2, 10);
    t1.join();
    std::cout << "task_thread: " << result.get() << 'n';
    return 0;
}
```
std::async

- **async** is an elegant function
 - Starts an asynchronous task
 - Returns a future
 - Use **async** if the problem is appropriate
 - Generates new software or hardware threads
 - Two policies are allowed
 - `launch::async` or `launch::deferred`

```cpp
#include <iostream>
#include <thread>
#include <future>

int ret10() { return 10; }

int main() {
    std::future<int> f = 
        std::async(std::launch::async, ret10);
    std::cout << f.get() << '\n';
    return 0;
}
```
std::async

- How to compute a bunch of tasks in parallel?
 - Use a vector of
 - futures
 - and loops!
- Caution
 - get() can only be called once on a given future

```cpp
#include <iostream>
#include <thread>
#include <future>
#include <vector>

int retArg(int i) { return i; }

int main() {
    std::vector<std::future<int>> futures;
    for (int i = 0; i < 10; ++i) {
        futures.push_back(std::async(std::launch::async, retArg, i));
    }

    std::vector<int> results;
    for (auto &future : futures) {
        results.push_back(future.get());
    }

    for (int i : results) { std::cout << i << 'n'; }
    return 0;
}
```
std::future and std::promise

- “Computing with future values”
- How does it work?
 - Create a promise
 - Promise will be fulfilled in the future
 - Prepare computation
 - Computation will start as soon as promise is fulfilled and value is ready to use
- As in real life
 - Always fulfill your promises
 - Otherwise
 A. broken_promise exception
 B. waiting for eternity

```cpp
#include <iostream>
#include <thread>
#include <future>
#include <vector>
#include <chrono>

int power(future<int> f) {
    int a = f.get();
    return a * a;
}

int main() {
    std::promise<int> p;
    std::future<int> f = p.get_future();
    std::future<int> res =
        std::async(std::launch::async,
                   power, std::move(f));
    std::this_thread::sleep_for(std::chrono::seconds(10));
    p.set_value(10);
    int result = res.get();
    std::cout << result << '
';
    return 0;
}
```
Make the most of your CPU cycles – matrix multiplication

- Testing different versions of a matrix multiplication
 - 3,000 x 3,000 * 3,000 x 3,000 matrix → 9,000,000 entries per matrix

- All tests run on my notebook
 - Intel® Core™ i7-5600U CPU @ 2.6 GHz
 - 2 hardware cores (+ hyper threading)
 - Using the g++ and clang++ compiler
 - Thread model: POSIX
 - g++ (Ubuntu 8.4.0-1ubuntu1~16.04.1) 8.4.0
 - clang++ version 10.0.0 (https://github.com/llvm/llvm-project.git x86_64-unknown-linux-gnu)
 - Every test was run only once → poor measurement, but will still prove my point
A naive matrix multiplication (no additional compiler flags)

- Runtime: g++ 13m 18.250s
- Runtime: clang++ 13m 48.348s

```cpp
#include <iostream>
#include <vector>

struct mat {
    size_t rows;
    size_t cols;
    std::vector<std::vector<double>> data;
    mat(size_t rows, size_t cols, double ival = 0.0)
        : rows(rows), cols(cols),
        data(rows, std::vector<double>(cols, ival)) {}

friend std::ostream &operator<<(std::ostream &os,
    const mat &m) {
    for (const auto &row : m.data) {
        for (const auto &entry : row) {
            os << entry << ' ';
        }
        os << '
';
    }
    return os;
}

friend mat operator* (const mat &lhs, const mat &rhs) {
    mat result(lhs.rows, rhs.cols, 0);
    for (size_t row = 0; row < lhs.rows; ++row) {
        for (size_t col = 0; col < rhs.cols; ++col) {
            for (size_t k = 0; k < lhs.cols; ++k) {
                result.data[row][col] += lhs.data[row][k] * rhs.data[k][col];
            }
        }
    }
    return result;
}
```

```cpp
int main(int argc, char **argv) {
    size_t dim1 = atoi(argv[1]);
    size_t dim2 = atoi(argv[1]);
    mat a(dim1, dim2, 2);
    mat b(dim1, dim2, 3);
    mat result = a * b;
    std::cout << result.data[0][0] << '\n';
    return 0;
}
```
Turn on compiler optimizations \texttt{--Ofast} and \texttt{--march=native}

- Runtime: g++ 2m 30.203s (\textasciitilde -10m 48s)
- Runtime: clang++ 2m 29.306 (\textasciitilde -11m 19s)
- Same code as on the last slide
- \texttt{--Ofast}
 - Compiler performs every optimization it knows (including the dark arts)
- \texttt{--march=native}
 - Produce code that is optimized for the target processor
 - Compiled program is only usable on platforms with same processor
Use data locality (and –Ofast –march=native)

- Runtime: g++ 2m 19.923s (~ -10s)
- Runtime: clang++ 2m 17.214 (~ -12s)

```c++
#include <iostream>
#include <vector>

struct mat {
    size_t rows;
    size_t cols;
    std::vector<double> data;

    mat(size_t rows, size_t cols, double ival = 0.0) :
        rows(rows), cols(cols), data(rows * cols, ival) {}
    double &operator()(size_t row, size_t col) {
        return data[row * cols + col];
    }
    const double &operator()(size_t row, size_t col) const {
        return data[row * cols + col];
    }
}

friend std::ostream &operator<<(std::ostream &os, const mat &m) {
    for (size_t row = 0; row < m.rows; ++row) {
        for (size_t col = 0; col < m.cols; ++col) {
            os << m(row, col) << ' ';
        }
        os << '
';
    }
    return os;
}

int main(int argc, char **argv) {
    size_t dim1 = atoi(argv[1]);
    size_t dim2 = atoi(argv[1]);
    mat a(dim1, dim2, 2);
    mat b(dim1, dim2, 3);
    mat result = a * b;
    std::cout << result(0, 0) << '
';
    return 0;
}
```

friend mat operator*(const mat &lhs, const mat &rhs) {
 mat result(lhs.rows, rhs.cols, 0);
 for (size_t row = 0; row < lhs.rows; ++row) {
 for (size_t col = 0; col < rhs.cols; ++col) {
 for (size_t k = 0; k < lhs.cols; ++k) {
 result(row, col) += lhs(row, k) * rhs(k, col);
 }
 }
 }
 return result;
}
Even more data locality (-Ofast -march=native)

- Runtime: g++ 19.920s (~ -2m)
- Runtime: clang++ 18.899s (~ -1m 59s)

```cpp
#include <iostream>
#include <vector>

struct mat {
    size_t rows;
    size_t cols;
    std::vector<double> data;
    mat(size_t rows, size_t cols, double ival = 0.0) :
        rows(rows), cols(cols), data(rows * cols, ival) {}
    double &operator()(size_t row, size_t col) {
        return data[row * cols + col];
    }
    const double &operator()(size_t row, size_t col) const {
        return data[row * cols + col];
    }
};

friend mat operator*(const mat &lhs, const mat &rhs) {
    mat result(lhs.rows, rhs.cols, 0);
    for (size_t row = 0; row < lhs.rows; ++row) {
        for (size_t k = 0; k < lhs.cols; ++k) {
            for (size_t col = 0; col < rhs.cols; ++col) {
                result(row, col) += lhs(row, k) * rhs(k, col);
            }
        }
    }
    return result;
}

friend std::ostream &operator<<(std::ostream &os, const mat &m) {
    for (size_t row = 0; row < m.rows; ++row) {
        for (size_t col = 0; col < m.cols; ++col) {
            os << m(row, col) << ' ';
        }
        os << '\n';
    }
    return os;
}
```

```cpp
int main(int argc, char **argv) {
    size_t dim1 = atoi(argv[1]);
    size_t dim2 = atoi(argv[1]);
    mat a(dim1, dim2, 2);
    mat b(dim1, dim2, 3);
    mat result = a * b;
    std::cout << result(0, 0) << '\n';
    return 0;
}
```
Run it in parallel (and data locality and –Ofast –march=native)

- Runtime: g++ 9.753s (~ -10s)
- Runtime: clang++ 11.309 (~ -8s)

```cpp
#include <iostream>
#include <vector>

struct mat {
    size_t rows;
    size_t cols;
    std::vector<double> data;

    mat(size_t rows, size_t cols, double ival = 0.0) :
        rows(rows), cols(cols), data(rows * cols, ival) {}

    double &operator()(size_t row, size_t col) {
        return data[row * cols + col];
    }

    const double &operator()(size_t row, size_t col) const {
        return data[row * cols + col];
    }

friend std::ostream &operator<<(std::ostream &os, const mat &m) {
    for (size_t row = 0; row < m.rows; ++row) {
        for (size_t col = 0; col < m.cols; ++col) {
            os << m(row, col) << \n; }
        os << \n; }
    return os;
}

friend mat operator*(const mat &lhs, const mat &rhs) {
    mat result(lhs.rows, rhs.cols, 0);
    size_t row, col, k;
    #pragma omp parallel for private(row, col, k) \ 
shared(lhs, rhs, result) schedule(static)
    for (row = 0; row < lhs.rows; ++row) {
        for (k = 0; k < lhs.cols; ++k) {
            for (col = 0; col < rhs.cols; ++col) {
                result(row, col) += lhs(row, k) * rhs(k, col);
            }
        }
    }
    return result;
}

int main(int argc, char **argv) {
    size_t dim1 = atoi(argv[1]);
    size_t dim2 = atoi(argv[2]);
    mat a(dim1, dim2, 2);
    mat b(dim1, dim2, 3);
    mat result = a * b;
    std::cout << result(0, 0) << \n;
    return 0;
}
```

- My machine has only two cores
- It makes sense that we can cut the runtime in half
Make the most of your CPU cycles – matrix multiplication

- Testing different versions of a matrix multiplication
 - $3000 \times 3000 \times 3000 \times 3000$ matrix $\rightarrow 9000000$ entries per matrix
 - Using a clever implementation and compiler optimizations we could save
 - g++ $\sim 13m \ 8s$
 - clang++ $\sim 13m \ 37s$
 - Initial times g++ $\sim 13m \ 18s$ / clang++ $\sim 13m \ 48s$
 - Final times g++ $\sim 10s$ / clang++ $\sim 11s$
Most important optimization flags

- Use a modern style: `-std=c++XX`, where `XX` is >= 11
- `-Ox`, where `x` is 0, 1, 2 or 3
 - Meaning: off, on, some more, insane
- `-Ofast`
 - All `-O3` optimizations and invalidation of standard-compliance
 - + use of `-ffast-math`, `-fno-protect-parens`, `-fstack-arrays`
- `-fmarch=native`
 - Generate specific code for the target architecture
- `-DNDEBUG`
 - Do not use debug mode code
- `-fdata-sections`, `-ffunction-sections`
 - Place each data item and function into its own segment (might allow for better linker optimization)
- `-flto=full`
 - Use full link-time (whole-program) optimizations (caution: needs vast amounts of RAM)
Compiler Explorer and what to keep in mind

- Do not do what libraries and compilers can do for you!
 - Write readable code and express intent to help your colleagues and the compiler
 - The compiler will be able to see through your code (most of the time)
 - Checkout “Compiler Explorer”: https://godbolt.org
 - Corresponding talk: “What has my compiler done for me lately?” by Matt Godbolt
 - https://www.youtube.com/watch?v=bSkpMdDe4g4

- If performance matters (always) …
 - Never make assumptions based on your gut feeling! systems are way too complex
 - Test your code (is it still correct?)
 - Measure (has it become faster?)
 - Test different optimization flags (see last slide)
 - Test different compilers and compiler versions!
 - Prefer a stable compiler version over some development version
Compiler Explorer: check what the compiler can do for you

Find the minimum of four integer values!
Wow!

Such minimum!

Much smart!

Very clever!
// find the minimum of four integers using hand-crafted function

```c
int min(int a, int b, int c, int d) {
    int m = a;
    if (b < m)
        m = b;
    if (c < m)
        m = c;
    if (d < m)
        return d;
    return m;
}
```

// finding the minimum using the STL

```c
#include <algorithm>

int min(int a, int b, int c, int d) {
    return std::min({a, b, c, d});
}
```
Recap

- Why high performance computing matters
- Hard physical limits
- When does it pay off?
- Levels of parallelism
- Parallel programming in C++
- Optimizing compilers
- Compiler Explorer
- Express intent and do not trust your gut feeling!
Thank you for your attention. Questions?