Mechatronics and Self-optimization

The integration of mechanical engineering and information technology results in extensive potentials. This is expressed by the term “mechatronics.” This term refers to the symbiotic cooperation of mechanics, electronics, control engineering and software technology, in order to improve the behavior of a technical system.

Future mechatronics systems encompass subsystems with inherent partial intelligence due to integrated micro processors. The behavior of the complete system will be characterized by communication and cooperation of intelligent subsystems. This establishes fascinating possibilities for the design of mechatronics products of tomorrow. The term Self-optimization characterizes this perspective: Self-optimization of a technical system is the endogenous adoption of objectives as reaction to changing influences and the resulting autonomous adjustment of parameters or structure and consequently of the system’s behavior. Self-optimization enables systems to act with inherent “Intelligence”, to react independently and flexibly to changing operation conditions.

This book to the 7th International Heinz Nixdorf Symposium contains 31 papers of renowned experts. The contributions cover a broad range of subject areas of the categories:

- Advanced methods and tools for the design of self-optimizing systems
- Reliability aspects in the development and in operation mode
- Advanced optimization strategies and computational intelligence
- Software architectures for self-optimizing systems
- Prevention of product piracy

History of the Heinz Nixdorf Symposium

1st Heinz Nixdorf Symposium, 1992: Parallel Architectures and Their Efficient Use
2nd Heinz Nixdorf Symposium, 1996: Fortgeschrittene Informationsstechnologie in der Produktentwicklung und Fertigung
3rd Heinz Nixdorf Symposium, 1999: Mechatronics and Advanced Motion Control
4th Heinz Nixdorf Symposium, 2000: Auf dem Weg zu den Produkten für die Märkte von morgen
5th Heinz Nixdorf Symposium, 2001: Autonomous Minirobots for Research and Entertainment AMARE 2001

Jürgen Gausemeier
Franz Rammig
Wilhelm Schäfer (Editors)

Self-optimizing Mechatronic Systems: Design the Future

- Technologies for Tomorrow’s Mechanical Engineering Products
- Dependability and Software Engineering
- Design Methods and Tools

7th International Heinz Nixdorf Symposium
Self-optimizing Mechatronic Systems

February 20 - 21, 2008
Heinz Nixdorf MuseumsForum
Paderborn, Germany
Self-optimizing Mechatronic Systems: Design the Future

- Technologies for Tomorrow’s Mechanical Engineering Products
- Dependability and Software Engineering
- Design Methods and Tools

7th International Heinz Nixdorf Symposium
Self-optimizing Mechatronic Systems
February 20 - 21, 2008
Heinz Nixdorf MuseumsForum
Paderborn, Germany
Table of Contents

Opening

J. Gausemeier, S. Kahl, S. Pook
From Mechatronics to Self-Optimizing Systems .. 3

Design Methodology

J. Gausemeier, J. Donoth, S. Pook, D. Zimmer, A. Schmidt
Conceptual Design of Self-Optimizing Mechatronic Systems 35

D. P. Politze
Experiences on Including Variability Information in a Function Oriented Product Documentation .. 53

J. Gausemeier, S. Kahl, C. Y. Low, B. Schulz
From the Principle Solution towards Controller Design of Self-Optimizing Systems ... 65

Advanced Optimization Strategies in Engineering

J. Geisler, A. Trächtler, K. Witting, M. Dellnitz
Self-Optimization of the Guidance Module of a Rail-bound Vehicle ... 85

K. Stahl, S. Oberthür
Towards Swarm-Based Self-Optimizing Distributed Resource Management ... 101

M. Montazeri-Gh, M. Asadi, H. Akbari
Optimization of AMT Gear Shifting Strategy in Hybrid Electric Vehicles ... 113
Reliability Aspects in the Development of Mechatronics

H. Hanselka, J. Nuffer

Quantitative Reliability Investigation of Adaptive Systems for Active Vibration Reduction ... 129

J. Jaeschke, A. Middendorf, K. Tsunezawa, H. Reichl

Reliability and Environmental Evaluation in Early Design Stages of Mechatronics ... 143

M. Wedel, P. Göhner, J. Gäng, B. Bertsche

Early Reliability Prediction of Programmable Mechatronic Systems .. 155

Advanced Development Methods and Tools

I. Kaiser, S. Pook, J. Gausemeier

Design of Integrated Mechatronics Supported by a Knowledge Base .. 171

A. Albers, J. Ottnad, P. Häußler

Structural Optimization in Mechatronic Systems ... 185

B. Scholz-Reiter, T. Jagalski

Modelling Autonomous Control in Production Logistics 199

Prevention of Product Piracy

T. Meiwald, M. Petermann, C. Gorbea, S. Kortler

Fighting Product Piracy: Selecting Action Measures for OEMs Based on Links to Situational Influencing Factors 215

A. Albers, L. Marxen, J. Oerding, M. Meboldt, T. Schäffer

Piracy Risk and Measure Analysis ... 233

U. Deppe, R. Rischmüller, D. Steffen

Reliability-oriented Development of Mechatronic Products 245
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Support for the Development of Mechatronics</td>
<td>M. Güdemann, F. Ortmeier, W. Reif</td>
<td>261</td>
</tr>
<tr>
<td>Developing Safety-Critical Mechatronical Systems</td>
<td>D. Korotkiy, B. Spiegelberger, B. Kausler</td>
<td>273</td>
</tr>
<tr>
<td>Fuselage Assembly with Computational Intelligence</td>
<td>K. M. Litwinski, B. Denkena, H.-C. Möhring</td>
<td>297</td>
</tr>
<tr>
<td>Self-Optimizing Human-Robot Systems for Search and Rescue in Desaster Scenarios</td>
<td>S. Oberthür, A. Znamenshchikov, B. Klöpper, H. Vöcking</td>
<td>347</td>
</tr>
<tr>
<td>Improved Flexible Resource Management by Means of Look-Ahead Scheduling and Bayesian Forecasting</td>
<td>B. Klöpper, C. Romaus, A. Schmidt, H. Vöcking</td>
<td>361</td>
</tr>
<tr>
<td>Computational Intelligence in Engineering</td>
<td>M. A. Ashraf, R. Torisu</td>
<td>377</td>
</tr>
<tr>
<td>Neural Network based Steering Controller for Tractor-Like Robot</td>
<td>S. Oberthür, A. Znamenshchikov, B. Klöpper, H. Vöcking</td>
<td>381</td>
</tr>
<tr>
<td>Improved Flexible Resource Management by Means of Look-Ahead Scheduling and Bayesian Forecasting</td>
<td>B. Klöpper, C. Romaus, A. Schmidt, H. Vöcking</td>
<td>397</td>
</tr>
<tr>
<td>A Multi-Agent Planning Problem for the Coordination of Function Modules</td>
<td>M. A. Ashraf, R. Torisu</td>
<td>401</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Verification of Reconfiguration</td>
<td>Y. Zhao, S. Oberthür, F. Rammig</td>
<td></td>
</tr>
<tr>
<td>Mechatronic Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe Online-Reconfiguration of Self-Optimizing Mechatronic Systems</td>
<td>E. Münch, A. Gambuzza, C. Paiz, C. Pohl, M. Porrmann</td>
<td>411</td>
</tr>
<tr>
<td>FPGA-in-the-Loop Simulations with CAMEL-View</td>
<td></td>
<td>429</td>
</tr>
<tr>
<td>Plenum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embedded System Complexity</td>
<td>H. Kopetz</td>
<td>469</td>
</tr>
<tr>
<td>Intelligent Objects at Work and in Everyday Life</td>
<td>O. Herzog</td>
<td>487</td>
</tr>
</tbody>
</table>
Mechatronics and Self-optimization

The integration of mechanical engineering and information technology results in extensive potentials. This is expressed by the term “mechatronics”. This term refers to the symbiotic cooperation of mechanics, electronics, control engineering and software technology, in order to improve the behavior of a technical system.

Future mechatronical systems encompass subsystems with inherent partial intelligence due to integrated micro processors. The behavior of the complete system will be characterized by communication and cooperation of intelligent subsystems. This establishes fascinating possibilities for the design of mechatronical products of tomorrow. The term Self-optimization characterizes this perspective: Self-optimization of a technical system is the endogenous adaption of objectives as reaction to changing influences and the resulting autonomous adjustment of parameters or structure and consequently of the system’s behavior. Self-optimization enables systems to act with inherent “intelligence”, to react independently and flexibly to changing operation conditions.

This book to the 7th International Heinz Nixdorf Symposium contains 31 papers of renown experts. The contributions cover a broad range of subject areas of the categories:

- Advanced methods and tools for the design of self-optimizing systems
- Reliability aspects in the development and in operation mode
- Advanced optimization strategies and computational Intelligence
- Software architectures for self-optimizing systems
- Prevention of product piracy

History of the Heinz Nixdorf Symposium

1st Heinz Nixdorf Symposium, 1992: Parallel Architectures and Their Efficient Use

2nd Heinz Nixdorf Symposium, 1996: Fortgeschrittene Informationstechnologie in der Produktentwicklung und Fertigung

3rd Heinz Nixdorf Symposium, 1999: Mechatronics and Advanced Motion Control

4th Heinz Nixdorf Symposium, 2000: Auf dem Weg zu den Produkten für die Märkte von morgen

5th Heinz Nixdorf Symposium, 2001: Autonomous Minirobots for Research and Edutainment AMiRE 2001

Mechatronics and Self-optimization

The integration of mechanical engineering and information technology results in extensive potentials. This is expressed by the term “mechatronics”. This term refers to the symbiotic cooperation of mechanics, electronics, control engineering and software technology in order to improve the behavior of a technical system.

Future mechatronic systems encompass subsystems with inherent partial intelligence due to integrated micro processors. The behavior of the complete system will be characterized by communication and cooperation of intelligent subsystems. This establishes fascinating possibilities for the design of mechatronical products of tomorrow. The term Self-optimization characterizes this perspective: Self-optimization of a technical system is the endogenous adaption of objectives as reaction to changing influences and the resulting autonomous adjustment of parameters or structure and consequently of the system's behavior. Self-optimization enables systems to act with inherent “Intelligence”, to react independently and flexibly to changing operation conditions.

This book to the 7th International Heinz Nixdorf Symposium contains 31 papers of renowned experts. The contributions cover a broad range of subject areas of the categories:
- Advanced methods and tools for the design of self-optimizing systems
- Reliability aspects in the development and in operation mode
- Advanced optimization strategies and computational intelligence
- Software architectures for self-optimizing systems
- Prevention of product piracy

History of the Heinz Nixdorf Symposium

1st Heinz Nixdorf Symposium, 1992: Parallel Architectures and Their Efficient Use
2nd Heinz Nixdorf Symposium, 1996: Fortgeschrittene Informations technologi in der Produktentwicklung und Fertigung
3rd Heinz Nixdorf Symposium, 1999: Mechatronics and Advanced Motion Control
4th Heinz Nixdorf Symposium, 2000: Auf dem Weg zu den Produkten für die Märkte von morgen
5th Heinz Nixdorf Symposium, 2001: Autonomous Minirobots for Research and Entertainment AMARE 2001

Jürgen Gausemeier
Franz Rammig
Wilhelm Schäfer (Editors)

Self-optimizing Mechatronic Systems: Design the Future

- Technologies for Tomorrow's Mechanical Engineering Products
- Dependability and Software Engineering
- Design Methods and Tools

7th International Heinz Nixdorf Symposium
Self-optimizing Mechatronic Systems

February 20 - 21, 2008
Heinz Nixdorf MuseumsForum
Paderborn, Germany