
!

C++ PROGRAMMING

Lecture 12

Secure Software Engineering Group

Philipp Dominik Schubert

CONTENTS

1. Cyber attacks

2. Program analysis

3. Why do we need program analysis?

4. Static program analysis

5. Designing code analysis (DECA I + II)

6. Software Engineering Group: jobs and theses

© Heinz Nixdorf Institut / Fraunhofer IEM2

Usual Cyber-Attack

 Find vulnerability or place backdoor

 Inject malicious code

 Circumvent detection

 Surveil system, infect more machines if required

 Execute payload

© Heinz Nixdorf Institut / Fraunhofer IEM3
[Figure taken from https://i.ytimg.com/vi/C-3FqOUf3nY/maxresdefault.jpg, Slide taken from ´Designing code analysis for large scale software systems´, Eric Bodden 2017]

https://i.ytimg.com/vi/C-3FqOUf3nY/maxresdefault.jpg

Who is responsible?

© Heinz Nixdorf Institut / Fraunhofer IEM4

According to a recent study by the DHS, more than 90% of all current cyber attacks succeed because of

vulnerabilities in the application layer!

[Slide taken from ´Designing code analysis for large scale software systems´, Eric Bodden 2017]

How can we reduce the number of vulnerabilities?

© Heinz Nixdorf Institut / Fraunhofer IEM5

 Write your code carefully

 Test your code excessively

 Use dynamic analysis

 Use static analysis

 Use manual reviews

Problem: Rice’s theorem (1953)

 Program analysis is mathematically provable hard

 All non-trivial semantic properties of programs are undecidable!

 A semantic property is one about the behavior

 An example

 Does a program terminate for all inputs?

 A property is non-trivial if

 It is neither true for every program

 Nor for no program

 Those are quite a lot of properties!

 https://en.wikipedia.org/wiki/Rice's_theorem

 Contains proof sketch as well as complete proof

 We have to use an over-approximation then!

© Heinz Nixdorf Institut / Fraunhofer IEM6

https://en.wikipedia.org/wiki/Rice's_theorem

Analyzing programs

 Static “white box” analysis Dynamic “black box” analysis

© Heinz Nixdorf Institut / Fraunhofer IEM7
[Slide taken from Lisa Nguyen]

Static versus dynamic analysis

 Static analysis

 Retrieve information about a program without
executing it

 Analysis performed on source code or
intermediate code

 Over-approximation of the program behavior

 Dynamic analysis

 Retrieve information about a program behavior
by executing it

 Execute on real or virtual processor

 Must be executed with sufficient test inputs
(code coverage)

 Discover a set of possible behaviors

 Uncertainty principle, make sure code
instrumentalization does not cause side-effects

8

 Program understanding

 Done by humans: program comprehension, code review, software walkthroughs

[https://en.wikipedia.org/wiki/Dynamic_program_analysis, https://en.wikipedia.org/wiki/Static_program_analysis]

© Heinz Nixdorf Institut / Fraunhofer IEM

Uses of static analysis

 Compiler optimization, bug finding, vulnerability detection

 Popular in industry for companies producing their own software

A. Part of nightly builds

B. At the end of the development phase

© Heinz Nixdorf Institut / Fraunhofer IEM9

Static analysis

© Heinz Nixdorf Institut / Fraunhofer IEM
10

C and C++

 Most common compilers

 GCC

 Clang/LLVM

 MSVC

 “Toward Understanding Compiler Bugs in GCC and LLVM”, ISSTA’16

 Most buggy component?

 C++

 In both compilers

 Account for 20% of the total bugs

 Bugs can be found in programs << 45 lines of code

© Heinz Nixdorf Institut / Fraunhofer IEM
11

100 bugs in Open Source C/C++ projects https://www.viva64.com/en/a/0079/

 Andrey Karpov and Evgeniy Ryzhkov

 Found bugs in projects using static analysis

 Projects include

 Apache HTTP Sever

 Chromium

 CMake

 MySQL

 Qt

 TortoiseSVN

 …

© Heinz Nixdorf Institut / Fraunhofer IEM12

https://www.viva64.com/en/a/0079/

Passing the wrong size https://www.viva64.com/en/a/0079/

 Wolfenstein 3D project

© Heinz Nixdorf Institut / Fraunhofer IEM13

https://www.viva64.com/en/a/0079/

How to?

 ReactOS project

© Heinz Nixdorf Institut / Fraunhofer IEM14

 At least the original intention was good

 Do not use strcmp

If bias shall be accessed just say so https://www.viva64.com/en/a/0079/

 VirtualDub project

© Heinz Nixdorf Institut / Fraunhofer IEM15

https://www.viva64.com/en/a/0079/

This is not how clear() works https://www.viva64.com/en/a/0079/

 TortoiseSVN project

© Heinz Nixdorf Institut / Fraunhofer IEM16

 Learn the STL!

https://www.viva64.com/en/a/0079/

This is not how clear() works https://www.viva64.com/en/a/0079/

 TortoiseSVN project

© Heinz Nixdorf Institut / Fraunhofer IEM17

https://www.viva64.com/en/a/0079/

Check twice to be sure https://www.viva64.com/en/a/0079/

 Notepad++ project

18 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Better check if unsigned works https://www.viva64.com/en/a/0079/

 Qt project
 size_t is usually something like: unsigned long long

19 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Checking for nullptr is usually good https://www.viva64.com/en/a/0079/

 Ultimate TCP/IP project

 Check char* for null two times?

 Probably:

 Password not empty was meant

*m_szPassword != '\0';

20 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Dereferencing nullptr https://www.viva64.com/en/a/0079/

 Chromium project

21 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Again sizeof https://www.viva64.com/en/a/0079/

 SMTP client with SSL/TLS project

22 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Forgot to dereference https://www.viva64.com/en/a/0079/

 Miranda IM project
 String-end determined incorrectly

23 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Checking things twice https://www.viva64.com/en/a/0079/

 Intel AMT SDK project

 Does not check the presence of a username

24 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Characteristics of C and C++

 What comes to my mind:

 Old

 Very powerful

 Expressive

 Complex

 Expert friendly

 A million rules to remember!

 In reality (oftentimes):

 Un-concentrated developers

 Call wrong function

 Forgot to dereference pointer

 sizeof operator

 “What is a protected abstract virtual base pure
virtual private destructor and when was the last
time you needed one?” Tom Cargill (1990)

class Base {

private:

virtual ~Base() = 0;

};

class Derived : protected virtual Base

{

...

};

25 © Heinz Nixdorf Institut / Fraunhofer IEM

Characteristics of C and C++

 What comes in my mind:

 Old

 Very powerful

 Expressive

 Complex

 Expert friendly

 A million rules to remember!

 In reality (oftentimes):

 Un-concentrated developers

 Call wrong function

 Forgot to dereference pointer

 sizeof operator

“What is a protected abstract virtual base pure virtual
private destructor and when was the last time you
needed one?” Tom Cargill (1990)

© Heinz Nixdorf Institut / Fraunhofer IEM26

WheN YoU FoRgot hoW To CoDE.

C and C++ are basically everywhere!

 When performance matters

 Operating systems

 Embedded systems

 Simulations

 Real-time systems

 Browsers

 and so on …

© Heinz Nixdorf Institut / Fraunhofer IEM27

Use static analysis

 … to reduce the number of coding mistakes!

 How?

 Recipe

1. Become aware of a bug or vulnerability

2. Understand the bug

3. Write a static analysis that finds the bug

4. Run the analysis on code

5. Obtain findings of potential bugs

6. If it is a bug fix it!

 Usually integrated within a build pipeline

© Heinz Nixdorf Institut / Fraunhofer IEM28

Data-flow analysis

 Intra-procedural analysis

© Heinz Nixdorf Institut / Fraunhofer IEM29

Function f Property 𝝋

Analysis

Does the property 𝜑 hold at statement s?

Some properties and corresponding analysis

 Is this variable still used later on?

 Live-variables analysis

 Can this code ever execute?

 Dead-code analysis

 Can this pointer ever be null?

 Nullness analysis

 Is this file handle ever closed?

 Typestate analysis

 Can sensitive data leak?

 Taint analysis

 There are many more

© Heinz Nixdorf Institut / Fraunhofer IEM30

Data-flow analysis: workflow

 Workflow in static analysis:

1. Parse function (as source code, bytecode or some other intermediate representation)

2. Convert into control-flow graph

3. Perform an analysis on the CFG

4. Find interesting properties

© Heinz Nixdorf Institut / Fraunhofer IEM31

int x = 1;

print(x);

if (z > 0) {

x = 2;

}

print(x);

int x = 1;

print(x);

if (z > 0)

x = 2;

print(x);

Intermediate representations

 Analysis usually performed on an intermediate representation (IR)

 Simpler than source language

 Comprises only a few op codes

 Uses jumps (goto) to represent loops

© Heinz Nixdorf Institut / Fraunhofer IEM32

LLVM

 Compiler infrastructure

 Provides many helpful mechanisms to write:

 Compiler optimizations

 Static analyses

 Intermediate representation: LLVM IR

 Independent of the concrete input/source language

 Pros

 No nesting

 Looping/ branches through jumps (goto)

 Simple basic operations

 3 address code

 Cons

 No direct mapping from LLVM IR back to source (requires debugging information)

© Heinz Nixdorf Institut / Fraunhofer IEM33

Front-end
Optimization/

Analysis
Source languages Target languageBack-end

Control-flow graph

int y = x;

if (p) x = y;

if (!p) z = 2;

b = y;

 Depending on complexity of p

 Mutual exclusiveness cannot be inferred

 CFGs are conservative

 If control may flow from stmt A to stmt B then there is an edge from A to B

 Opposite is not true!

 Problem is undecidable

 Over-approximation

 Real CFGs contain exceptional edges as well

 Otherwise unsound

© Heinz Nixdorf Institut / Fraunhofer IEM34

int y = x;

if (p)

if (!p)

b = y;

x = y;

z = 2;

Perform an analysis

 Analysis: What values are printed?

 Reaching definition analysis

int x = 1;

print(x);

if (z > 0) {

x = 2;

}

print(x);

 Use data flow analysis

© Heinz Nixdorf Institut / Fraunhofer IEM35

 Control flow

 Data flow

int x = 1;

print(x);

if (z > 0)

x = 2;

print(x);

𝑥 = ?

𝑥 = 1

𝑥 = 1

𝑥 = 1

𝑥 =1

𝑥 = 2

𝑥 ∈ {1, 2}

A more advanced example

© Heinz Nixdorf Institut / Fraunhofer IEM36

 Which assignments are unnecessary?

 Live variables analysis

int z = /* some value */;

int x = 1;

int y = 2;

if (z > 0) {

y = z;

if (z > 1) {

z = 7;

}

}

print(y);

 Findings

 Assignment to x and z can be eliminated

int z = // some val

int x = 1;

int y = 2;

if (z > 0)

y = z;

if (z > 1)

z = 7;

print(y);

∅

{𝑦} {𝑦}

{𝑦}

{𝑦, 𝑧}

{𝑧}
{𝑦, 𝑧}

{𝑦, 𝑧}

{𝑧}

{𝑧}

∅

Overwrite y,

don’t need

old y

That easy? How about loops?

© Heinz Nixdorf Institut / Fraunhofer IEM37

 Reaching definitions revisited

int x = 1;

while (/* some property */) {

++x;

}

print(x);

 Problem!

 This does not terminate

 Number of iterations must be bound

 We have a mathematical theory

 Monotone framework

int x = 1;

while(…)

++x;

print(x);

𝑥 =?

𝑥 = 1

𝑥 = 2

𝑥 = 1

𝑥 ∈ {2,3, … }𝑥 ∈ {1,2, … }

𝑥 ∈ {1,2, … }

𝑥 = 1

Monotone framework

1. Analysis direction (forward or backward)

2. Analysis domain (lattice)

3. Effect of statements on information (flow functions)

4. Initial values (values of the lattice)

5. Merge information (binary operator on sets of lattice values)

© Heinz Nixdorf Institut / Fraunhofer IEM38

 Algorithm fits on one slide

 It is not that hard, right?

Flow functions

Initial values

Concrete

static

analysis

Uniform

evaluation

algorithm

Monotone framework

1. Analysis direction (forward or backward)

2. Analysis domain (lattice)

3. Effect of statements on information (flow functions)

4. Initial values (values of the lattice)

5. Merge information (binary operator on sets of lattice values)

© Heinz Nixdorf Institut / Fraunhofer IEM39

 Algorithm fits on one slide

 It is not that hard, right?

Flow functions

Initial values

Concrete

static

analysis

Uniform

evaluation

algorithm

Intra- versus inter-procedural analysis: A call graph

void foo() {

bar(); // cs 1

}

void bar() {}

int main() {

foo(); // cs 2

bar(); // cs 3

return 0;

}

 It is not always that easy!

 Function pointers

 Virtual dispatch

© Heinz Nixdorf Institut / Fraunhofer IEM40

main

foo

bar

b
a
r
(
)
;

/
/

c
s
3

Calling contexts

 Caution

 Monotone framework cannot be used directly for inter-procedural analysis: too imprecise!

 We have to consider calling contexts

© Heinz Nixdorf Institut / Fraunhofer IEM41

Problems with usable static analysis

 Precision versus performance

 Static analysis often does not scale well

 Massive runtimes and memory consumption

 Sophisticated solutions

 Often require (really) complex algorithms

 Abstractions making it even more difficult

 Undecidable problems

© Heinz Nixdorf Institut / Fraunhofer IEM42

Pros and cons of automated static analysis

 Fast(er than manual audits)

 Cheaper than manual audits

 Finds almost as much as manual audits

 Efficient for obvious vulnerabilities

 Detects useful hints for more complex programs

 Only requires basic knowledge of security to
review warnings

 Less flexible than human analysts

 Difficulties staging complex attacks

 Cannot interpret human language

 Yields too many results

 False positives

 Irrelevant results

 Tough to implement

© Heinz Nixdorf Institut / Fraunhofer IEM43

Designing code analysis for large-scale software systems (DECA I + II)

 Lecturer: Eric Bodden

 Contents

 Intra-procedural data-flow analysis

 Call-graph construction algorithms

 Context-insensitive inter-procedural data-flow analysis

 Context-sensitivity using the call-strings approach

 Value-based context

 Context-sensitivity using the functional approach

 Efficiently solving distributed problems in the IFDS, IDE, and (S)(W)PDS frameworks

 Current challenges in inter-procedural static program analysis

 Applications to software security

 Check out the University‘s course catalogue or our Secure Software Engineering YouTube channel at
https://www.youtube.com/channel/UCtdWi1oH1huXVXeeqHPbbzg

© Heinz Nixdorf Institut / Fraunhofer IEM44

https://www.youtube.com/channel/UCtdWi1oH1huXVXeeqHPbbzg

Also check out

 Lecture “Foundations of Programming Languages”, Christoph Reichenbach (now Lund University)

 SEPL Goethe University, Frankfurt am Main

 Have a look at the following YouTube playlist (one lecture unit)

 https://www.youtube.com/watch?v=sxiFwiCgoVo&list=PLgJZZQPiH1mHIZAyIF1baZbMpIzxXn90o

 Optimizations and static analysis

 What?

 Why?

 How?

© Heinz Nixdorf Institut / Fraunhofer IEM45

https://www.youtube.com/watch?v=sxiFwiCgoVo&list=PLgJZZQPiH1mHIZAyIF1baZbMpIzxXn90o

It is all about creativity: user-defined operators, close enough?

 You cannot define custom operators

 But how about that?

int a = 10;

int c = a /multiply/ 20;

int d = a /times/ c;

cout << c << '\n';

 This can be realized in C++

 Associativity (left or right) depends on how you
overload operator/

 Do not use this in real projects!

#include <iostream>

enum _multiplication { times, multiply, mult, $cool$ };

// tiny int wrapper to trick the type system
struct _int {
_int(int i) : i(i) {}
// implicit conversion operator
operator int() const { return i; }
int i;

};

_int operator/(int i, _multiplication m) {
return _int(i);

}

int operator/(_int j, int k) { return j * k; }

int main() {
int a = 12 /times/ 2;
int b = 144 /$cool$/ 3;
int c = 4 /multiply/ 2 /mult/ 3;
std::cout << "a= " << a << ", b= " << b

<< ", c= " << c << '\n';
return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM46

Jobs and theses

 Topic

 Static analysis

 C++ programming

 LLVM compiler framework

 Benefits

 Money ;-)

 Fun

 Learn a lot

 Invitations to our professional and social events

 Opportunities for bachelor and master theses

 Lots of career options

 Working on an important topic

 Just drop me an email

© Heinz Nixdorf Institut / Fraunhofer IEM47

Recap

 Program analysis

 Real-world findings

 Static code analysis

 Custom operator hack

 Next time

 Introduction to the final project

© Heinz Nixdorf Institut / Fraunhofer IEM48

Thank you for your attention
Questions?

