
!

C++ PROGRAMMING

Lecture 12

Secure Software Engineering Group

Philipp Dominik Schubert

CONTENTS

1. Cyber attacks

2. Program analysis

3. Why do we need program analysis?

4. Static program analysis

5. Designing code analysis (DECA I + II)

6. Software Engineering Group: jobs and theses

© Heinz Nixdorf Institut / Fraunhofer IEM2

Usual Cyber-Attack

 Find vulnerability or place backdoor

 Inject malicious code

 Circumvent detection

 Surveil system, infect more machines if required

 Execute payload

© Heinz Nixdorf Institut / Fraunhofer IEM3
[Figure taken from https://i.ytimg.com/vi/C-3FqOUf3nY/maxresdefault.jpg, Slide taken from ´Designing code analysis for large scale software systems´, Eric Bodden 2017]

https://i.ytimg.com/vi/C-3FqOUf3nY/maxresdefault.jpg

Who is responsible?

© Heinz Nixdorf Institut / Fraunhofer IEM4

According to a recent study by the DHS, more than 90% of all current cyber attacks succeed because of

vulnerabilities in the application layer!

[Slide taken from ´Designing code analysis for large scale software systems´, Eric Bodden 2017]

How can we reduce the number of vulnerabilities?

© Heinz Nixdorf Institut / Fraunhofer IEM5

 Write your code carefully

 Test your code excessively

 Use dynamic analysis

 Use static analysis

 Use manual reviews

Problem: Rice’s theorem (1953)

 Program analysis is mathematically provable hard

 All non-trivial semantic properties of programs are undecidable!

 A semantic property is one about the behavior

 An example

 Does a program terminate for all inputs?

 A property is non-trivial if

 It is neither true for every program

 Nor for no program

 Those are quite a lot of properties!

 https://en.wikipedia.org/wiki/Rice's_theorem

 Contains proof sketch as well as complete proof

 We have to use an over-approximation then!

© Heinz Nixdorf Institut / Fraunhofer IEM6

https://en.wikipedia.org/wiki/Rice's_theorem

Analyzing programs

 Static “white box” analysis  Dynamic “black box” analysis

© Heinz Nixdorf Institut / Fraunhofer IEM7
[Slide taken from Lisa Nguyen]

Static versus dynamic analysis

 Static analysis

 Retrieve information about a program without
executing it

 Analysis performed on source code or
intermediate code

 Over-approximation of the program behavior

 Dynamic analysis

 Retrieve information about a program behavior
by executing it

 Execute on real or virtual processor

 Must be executed with sufficient test inputs
(code coverage)

 Discover a set of possible behaviors

 Uncertainty principle, make sure code
instrumentalization does not cause side-effects

8

 Program understanding

 Done by humans: program comprehension, code review, software walkthroughs

[https://en.wikipedia.org/wiki/Dynamic_program_analysis, https://en.wikipedia.org/wiki/Static_program_analysis]

© Heinz Nixdorf Institut / Fraunhofer IEM

Uses of static analysis

 Compiler optimization, bug finding, vulnerability detection

 Popular in industry for companies producing their own software

A. Part of nightly builds

B. At the end of the development phase

© Heinz Nixdorf Institut / Fraunhofer IEM9

Static analysis

© Heinz Nixdorf Institut / Fraunhofer IEM
10

C and C++

 Most common compilers

 GCC

 Clang/LLVM

 MSVC

 “Toward Understanding Compiler Bugs in GCC and LLVM”, ISSTA’16

 Most buggy component?

 C++

 In both compilers

 Account for 20% of the total bugs

 Bugs can be found in programs << 45 lines of code

© Heinz Nixdorf Institut / Fraunhofer IEM
11

100 bugs in Open Source C/C++ projects https://www.viva64.com/en/a/0079/

 Andrey Karpov and Evgeniy Ryzhkov

 Found bugs in projects using static analysis

 Projects include

 Apache HTTP Sever

 Chromium

 CMake

 MySQL

 Qt

 TortoiseSVN

 …

© Heinz Nixdorf Institut / Fraunhofer IEM12

https://www.viva64.com/en/a/0079/

Passing the wrong size https://www.viva64.com/en/a/0079/

 Wolfenstein 3D project

© Heinz Nixdorf Institut / Fraunhofer IEM13

https://www.viva64.com/en/a/0079/

How to?

 ReactOS project

© Heinz Nixdorf Institut / Fraunhofer IEM14

 At least the original intention was good

 Do not use strcmp

If bias shall be accessed just say so https://www.viva64.com/en/a/0079/

 VirtualDub project

© Heinz Nixdorf Institut / Fraunhofer IEM15

https://www.viva64.com/en/a/0079/

This is not how clear() works https://www.viva64.com/en/a/0079/

 TortoiseSVN project

© Heinz Nixdorf Institut / Fraunhofer IEM16

 Learn the STL!

https://www.viva64.com/en/a/0079/

This is not how clear() works https://www.viva64.com/en/a/0079/

 TortoiseSVN project

© Heinz Nixdorf Institut / Fraunhofer IEM17

https://www.viva64.com/en/a/0079/

Check twice to be sure https://www.viva64.com/en/a/0079/

 Notepad++ project

18 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Better check if unsigned works https://www.viva64.com/en/a/0079/

 Qt project
 size_t is usually something like: unsigned long long

19 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Checking for nullptr is usually good https://www.viva64.com/en/a/0079/

 Ultimate TCP/IP project

 Check char* for null two times?

 Probably:

 Password not empty was meant

*m_szPassword != '\0';

20 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Dereferencing nullptr https://www.viva64.com/en/a/0079/

 Chromium project

21 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Again sizeof https://www.viva64.com/en/a/0079/

 SMTP client with SSL/TLS project

22 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Forgot to dereference https://www.viva64.com/en/a/0079/

 Miranda IM project
 String-end determined incorrectly

23 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Checking things twice https://www.viva64.com/en/a/0079/

 Intel AMT SDK project

 Does not check the presence of a username

24 © Heinz Nixdorf Institut / Fraunhofer IEM

https://www.viva64.com/en/a/0079/

Characteristics of C and C++

 What comes to my mind:

 Old

 Very powerful

 Expressive

 Complex

 Expert friendly

 A million rules to remember!

 In reality (oftentimes):

 Un-concentrated developers

 Call wrong function

 Forgot to dereference pointer

 sizeof operator

 “What is a protected abstract virtual base pure
virtual private destructor and when was the last
time you needed one?” Tom Cargill (1990)

class Base {

private:

virtual ~Base() = 0;

};

class Derived : protected virtual Base

{

...

};

25 © Heinz Nixdorf Institut / Fraunhofer IEM

Characteristics of C and C++

 What comes in my mind:

 Old

 Very powerful

 Expressive

 Complex

 Expert friendly

 A million rules to remember!

 In reality (oftentimes):

 Un-concentrated developers

 Call wrong function

 Forgot to dereference pointer

 sizeof operator

“What is a protected abstract virtual base pure virtual
private destructor and when was the last time you
needed one?” Tom Cargill (1990)

© Heinz Nixdorf Institut / Fraunhofer IEM26

WheN YoU FoRgot hoW To CoDE.

C and C++ are basically everywhere!

 When performance matters

 Operating systems

 Embedded systems

 Simulations

 Real-time systems

 Browsers

 and so on …

© Heinz Nixdorf Institut / Fraunhofer IEM27

Use static analysis

 … to reduce the number of coding mistakes!

 How?

 Recipe

1. Become aware of a bug or vulnerability

2. Understand the bug

3. Write a static analysis that finds the bug

4. Run the analysis on code

5. Obtain findings of potential bugs

6. If it is a bug  fix it!

 Usually integrated within a build pipeline

© Heinz Nixdorf Institut / Fraunhofer IEM28

Data-flow analysis

 Intra-procedural analysis

© Heinz Nixdorf Institut / Fraunhofer IEM29

Function f Property 𝝋

Analysis

Does the property 𝜑 hold at statement s?

Some properties and corresponding analysis

 Is this variable still used later on?

 Live-variables analysis

 Can this code ever execute?

 Dead-code analysis

 Can this pointer ever be null?

 Nullness analysis

 Is this file handle ever closed?

 Typestate analysis

 Can sensitive data leak?

 Taint analysis

 There are many more

© Heinz Nixdorf Institut / Fraunhofer IEM30

Data-flow analysis: workflow

 Workflow in static analysis:

1. Parse function (as source code, bytecode or some other intermediate representation)

2. Convert into control-flow graph

3. Perform an analysis on the CFG

4. Find interesting properties

© Heinz Nixdorf Institut / Fraunhofer IEM31

int x = 1;

print(x);

if (z > 0) {

x = 2;

}

print(x);

int x = 1;

print(x);

if (z > 0)

x = 2;

print(x);

Intermediate representations

 Analysis usually performed on an intermediate representation (IR)

 Simpler than source language

 Comprises only a few op codes

 Uses jumps (goto) to represent loops

© Heinz Nixdorf Institut / Fraunhofer IEM32

LLVM

 Compiler infrastructure

 Provides many helpful mechanisms to write:

 Compiler optimizations

 Static analyses

 Intermediate representation: LLVM IR

 Independent of the concrete input/source language

 Pros

 No nesting

 Looping/ branches through jumps (goto)

 Simple basic operations

 3 address code

 Cons

 No direct mapping from LLVM IR back to source (requires debugging information)

© Heinz Nixdorf Institut / Fraunhofer IEM33

Front-end
Optimization/

Analysis
Source languages Target languageBack-end

Control-flow graph

int y = x;

if (p) x = y;

if (!p) z = 2;

b = y;

 Depending on complexity of p

 Mutual exclusiveness cannot be inferred

 CFGs are conservative

 If control may flow from stmt A to stmt B then there is an edge from A to B

 Opposite is not true!

 Problem is undecidable

 Over-approximation

 Real CFGs contain exceptional edges as well

 Otherwise unsound

© Heinz Nixdorf Institut / Fraunhofer IEM34

int y = x;

if (p)

if (!p)

b = y;

x = y;

z = 2;

Perform an analysis

 Analysis: What values are printed?

 Reaching definition analysis

int x = 1;

print(x);

if (z > 0) {

x = 2;

}

print(x);

 Use data flow analysis

© Heinz Nixdorf Institut / Fraunhofer IEM35

 Control flow

 Data flow

int x = 1;

print(x);

if (z > 0)

x = 2;

print(x);

𝑥 = ?

𝑥 = 1

𝑥 = 1

𝑥 = 1

𝑥 =1

𝑥 = 2

𝑥 ∈ {1, 2}

A more advanced example

© Heinz Nixdorf Institut / Fraunhofer IEM36

 Which assignments are unnecessary?

 Live variables analysis

int z = /* some value */;

int x = 1;

int y = 2;

if (z > 0) {

y = z;

if (z > 1) {

z = 7;

}

}

print(y);

 Findings

 Assignment to x and z can be eliminated

int z = // some val

int x = 1;

int y = 2;

if (z > 0)

y = z;

if (z > 1)

z = 7;

print(y);

∅

{𝑦} {𝑦}

{𝑦}

{𝑦, 𝑧}

{𝑧}
{𝑦, 𝑧}

{𝑦, 𝑧}

{𝑧}

{𝑧}

∅

Overwrite y,

don’t need

old y

That easy? How about loops?

© Heinz Nixdorf Institut / Fraunhofer IEM37

 Reaching definitions revisited

int x = 1;

while (/* some property */) {

++x;

}

print(x);

 Problem!

 This does not terminate

 Number of iterations must be bound

 We have a mathematical theory

 Monotone framework

int x = 1;

while(…)

++x;

print(x);

𝑥 =?

𝑥 = 1

𝑥 = 2

𝑥 = 1

𝑥 ∈ {2,3, … }𝑥 ∈ {1,2, … }

𝑥 ∈ {1,2, … }

𝑥 = 1

Monotone framework

1. Analysis direction (forward or backward)

2. Analysis domain (lattice)

3. Effect of statements on information (flow functions)

4. Initial values (values of the lattice)

5. Merge information (binary operator on sets of lattice values)

© Heinz Nixdorf Institut / Fraunhofer IEM38

 Algorithm fits on one slide

 It is not that hard, right?

Flow functions

Initial values

Concrete

static

analysis

Uniform

evaluation

algorithm

Monotone framework

1. Analysis direction (forward or backward)

2. Analysis domain (lattice)

3. Effect of statements on information (flow functions)

4. Initial values (values of the lattice)

5. Merge information (binary operator on sets of lattice values)

© Heinz Nixdorf Institut / Fraunhofer IEM39

 Algorithm fits on one slide

 It is not that hard, right?

Flow functions

Initial values

Concrete

static

analysis

Uniform

evaluation

algorithm

Intra- versus inter-procedural analysis: A call graph

void foo() {

bar(); // cs 1

}

void bar() {}

int main() {

foo(); // cs 2

bar(); // cs 3

return 0;

}

 It is not always that easy!

 Function pointers

 Virtual dispatch

© Heinz Nixdorf Institut / Fraunhofer IEM40

main

foo

bar

b
a
r
(
)
;

/
/

c
s
3

Calling contexts

 Caution

 Monotone framework cannot be used directly for inter-procedural analysis: too imprecise!

 We have to consider calling contexts

© Heinz Nixdorf Institut / Fraunhofer IEM41

Problems with usable static analysis

 Precision versus performance

 Static analysis often does not scale well

 Massive runtimes and memory consumption

 Sophisticated solutions

 Often require (really) complex algorithms

 Abstractions making it even more difficult

 Undecidable problems

© Heinz Nixdorf Institut / Fraunhofer IEM42

Pros and cons of automated static analysis

 Fast(er than manual audits)

 Cheaper than manual audits

 Finds almost as much as manual audits

 Efficient for obvious vulnerabilities

 Detects useful hints for more complex programs

 Only requires basic knowledge of security to
review warnings

 Less flexible than human analysts

 Difficulties staging complex attacks

 Cannot interpret human language

 Yields too many results

 False positives

 Irrelevant results

 Tough to implement

© Heinz Nixdorf Institut / Fraunhofer IEM43

Designing code analysis for large-scale software systems (DECA I + II)

 Lecturer: Eric Bodden

 Contents

 Intra-procedural data-flow analysis

 Call-graph construction algorithms

 Context-insensitive inter-procedural data-flow analysis

 Context-sensitivity using the call-strings approach

 Value-based context

 Context-sensitivity using the functional approach

 Efficiently solving distributed problems in the IFDS, IDE, and (S)(W)PDS frameworks

 Current challenges in inter-procedural static program analysis

 Applications to software security

 Check out the University‘s course catalogue or our Secure Software Engineering YouTube channel at
https://www.youtube.com/channel/UCtdWi1oH1huXVXeeqHPbbzg

© Heinz Nixdorf Institut / Fraunhofer IEM44

https://www.youtube.com/channel/UCtdWi1oH1huXVXeeqHPbbzg

Also check out

 Lecture “Foundations of Programming Languages”, Christoph Reichenbach (now Lund University)

 SEPL Goethe University, Frankfurt am Main

 Have a look at the following YouTube playlist (one lecture unit)

 https://www.youtube.com/watch?v=sxiFwiCgoVo&list=PLgJZZQPiH1mHIZAyIF1baZbMpIzxXn90o

 Optimizations and static analysis

 What?

 Why?

 How?

© Heinz Nixdorf Institut / Fraunhofer IEM45

https://www.youtube.com/watch?v=sxiFwiCgoVo&list=PLgJZZQPiH1mHIZAyIF1baZbMpIzxXn90o

It is all about creativity: user-defined operators, close enough?

 You cannot define custom operators

 But how about that?

int a = 10;

int c = a /multiply/ 20;

int d = a /times/ c;

cout << c << '\n';

 This can be realized in C++

 Associativity (left or right) depends on how you
overload operator/

 Do not use this in real projects!

#include <iostream>

enum _multiplication { times, multiply, mult, $cool$ };

// tiny int wrapper to trick the type system
struct _int {
_int(int i) : i(i) {}
// implicit conversion operator
operator int() const { return i; }
int i;

};

_int operator/(int i, _multiplication m) {
return _int(i);

}

int operator/(_int j, int k) { return j * k; }

int main() {
int a = 12 /times/ 2;
int b = 144 /$cool$/ 3;
int c = 4 /multiply/ 2 /mult/ 3;
std::cout << "a= " << a << ", b= " << b

<< ", c= " << c << '\n';
return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM46

Jobs and theses

 Topic

 Static analysis

 C++ programming

 LLVM compiler framework

 Benefits

 Money ;-)

 Fun

 Learn a lot

 Invitations to our professional and social events

 Opportunities for bachelor and master theses

 Lots of career options

 Working on an important topic

 Just drop me an email

© Heinz Nixdorf Institut / Fraunhofer IEM47

Recap

 Program analysis

 Real-world findings

 Static code analysis

 Custom operator hack

 Next time

 Introduction to the final project

© Heinz Nixdorf Institut / Fraunhofer IEM48

Thank you for your attention
Questions?

