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Usual Cyber-Attack

 Find vulnerability or place backdoor

 Inject malicious code

 Circumvent detection

 Surveil system, infect more machines if required

 Execute payload
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[Figure taken from https://i.ytimg.com/vi/C-3FqOUf3nY/maxresdefault.jpg, Slide taken from ´Designing code analysis for large scale software systems´, Eric Bodden 2017]
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Who is responsible?
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According to a recent study by the DHS, more than 90% of all current cyber attacks succeed because of  

vulnerabilities in the application layer!

[Slide taken from ´Designing code analysis for large scale software systems´, Eric Bodden 2017]



How can we reduce the number of vulnerabilities?
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 Write your code carefully

 Test your code excessively

 Use dynamic analysis

 Use static analysis

 Use manual reviews



Problem: Rice’s theorem (1953)

 Program analysis is mathematically provable hard

 All non-trivial semantic properties of programs are undecidable!

 A semantic property is one about the behavior

 An example

 Does a program terminate for all inputs?

 A property is non-trivial if

 It is neither true for every program

 Nor for no program

 Those are quite a lot of properties!

 https://en.wikipedia.org/wiki/Rice's_theorem

 Contains proof sketch as well as complete proof

 We have to use an over-approximation then!
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https://en.wikipedia.org/wiki/Rice's_theorem


Analyzing programs

 Static “white box” analysis  Dynamic “black box” analysis
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[Slide taken from Lisa Nguyen]



Static versus dynamic analysis

 Static analysis

 Retrieve information about a program without 
executing it

 Analysis performed on source code or 
intermediate code

 Over-approximation of the program behavior

 Dynamic analysis

 Retrieve information about a program behavior 
by executing it

 Execute on real or virtual processor

 Must be executed with sufficient test inputs 
(code coverage)

 Discover a set of possible behaviors

 Uncertainty principle, make sure code 
instrumentalization does not cause side-effects

8

 Program understanding

 Done by humans: program comprehension, code review, software walkthroughs

[https://en.wikipedia.org/wiki/Dynamic_program_analysis, https://en.wikipedia.org/wiki/Static_program_analysis]
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Uses of static analysis

 Compiler optimization, bug finding, vulnerability detection

 Popular in industry for companies producing their own software

A. Part of nightly builds

B. At the end of the development phase
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Static analysis
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C and C++

 Most common compilers

 GCC

 Clang/LLVM

 MSVC

 “Toward Understanding Compiler Bugs in GCC and LLVM”, ISSTA’16

 Most buggy component?

 C++

 In both compilers

 Account for 20% of the total bugs

 Bugs can be found in programs << 45 lines of code
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100 bugs in Open Source C/C++ projects https://www.viva64.com/en/a/0079/

 Andrey Karpov and Evgeniy Ryzhkov

 Found bugs in projects using static analysis

 Projects include

 Apache HTTP Sever

 Chromium

 CMake

 MySQL

 Qt

 TortoiseSVN

 …
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https://www.viva64.com/en/a/0079/


Passing the wrong size https://www.viva64.com/en/a/0079/

 Wolfenstein 3D project
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https://www.viva64.com/en/a/0079/


How to?

 ReactOS project
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 At least the original intention was good

 Do not use strcmp



If bias shall be accessed just say so https://www.viva64.com/en/a/0079/

 VirtualDub project
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https://www.viva64.com/en/a/0079/


This is not how clear() works https://www.viva64.com/en/a/0079/

 TortoiseSVN project
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 Learn the STL!

https://www.viva64.com/en/a/0079/


This is not how clear() works https://www.viva64.com/en/a/0079/

 TortoiseSVN project
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https://www.viva64.com/en/a/0079/


Check twice to be sure https://www.viva64.com/en/a/0079/

 Notepad++ project
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https://www.viva64.com/en/a/0079/


Better check if unsigned works https://www.viva64.com/en/a/0079/

 Qt project
 size_t is usually something like: unsigned long long
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https://www.viva64.com/en/a/0079/


Checking for nullptr is usually good https://www.viva64.com/en/a/0079/

 Ultimate TCP/IP project

 Check char* for null two times?

 Probably:

 Password not empty was meant

*m_szPassword != '\0';
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https://www.viva64.com/en/a/0079/


Dereferencing nullptr https://www.viva64.com/en/a/0079/

 Chromium project
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https://www.viva64.com/en/a/0079/


Again sizeof https://www.viva64.com/en/a/0079/

 SMTP client with SSL/TLS project
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https://www.viva64.com/en/a/0079/


Forgot to dereference https://www.viva64.com/en/a/0079/

 Miranda IM project
 String-end determined incorrectly
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https://www.viva64.com/en/a/0079/


Checking things twice https://www.viva64.com/en/a/0079/

 Intel AMT SDK project

 Does not check the presence of a username
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Characteristics of C and C++

 What comes to my mind:

 Old

 Very powerful

 Expressive

 Complex

 Expert friendly

 A million rules to remember!

 In reality (oftentimes):

 Un-concentrated developers

 Call wrong function

 Forgot to dereference pointer

 sizeof operator

 “What is a protected abstract virtual base pure 
virtual private destructor and when was the last 
time you needed one?” Tom Cargill (1990)

class Base {

private:

virtual ~Base() = 0;

};

class Derived : protected virtual Base 

{

...

};
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WheN YoU FoRgot hoW To CoDE.



C and C++ are basically everywhere!

 When performance matters

 Operating systems

 Embedded systems

 Simulations

 Real-time systems

 Browsers

 and so on …
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Use static analysis

 … to reduce the number of coding mistakes!

 How?

 Recipe

1. Become aware of a bug or vulnerability

2. Understand the bug

3. Write a static analysis that finds the bug

4. Run the analysis on code

5. Obtain findings of potential bugs

6. If it is a bug  fix it!

 Usually integrated within a build pipeline
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Data-flow analysis

 Intra-procedural analysis
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Function f Property 𝝋

Analysis

Does the property 𝜑 hold at statement s?



Some properties and corresponding analysis

 Is this variable still used later on?

 Live-variables analysis

 Can this code ever execute?

 Dead-code analysis

 Can this pointer ever be null?

 Nullness analysis

 Is this file handle ever closed?

 Typestate analysis

 Can sensitive data leak?

 Taint analysis

 There are many more
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Data-flow analysis: workflow

 Workflow in static analysis:

1. Parse function (as source code, bytecode or some other intermediate representation)

2. Convert into control-flow graph 

3. Perform an analysis on the CFG

4. Find interesting properties

© Heinz Nixdorf Institut / Fraunhofer IEM31

int x = 1;

print(x);

if (z > 0) {

x = 2;

}

print(x);

int x = 1;

print(x);

if (z > 0)

x = 2;

print(x);



Intermediate representations

 Analysis usually performed on an intermediate representation (IR)

 Simpler than source language

 Comprises only a few op codes

 Uses jumps (goto) to represent loops
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LLVM

 Compiler infrastructure

 Provides many helpful mechanisms to write: 

 Compiler optimizations

 Static analyses

 Intermediate representation: LLVM IR

 Independent of the concrete input/source language

 Pros

 No nesting

 Looping/ branches through jumps (goto)

 Simple basic operations

 3 address code

 Cons

 No direct mapping from LLVM IR back to source (requires debugging information)
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Front-end
Optimization/

Analysis
Source languages Target languageBack-end



Control-flow graph

int y = x;

if (p) x = y;

if (!p) z = 2;

b = y;

 Depending on complexity of p

 Mutual exclusiveness cannot be inferred

 CFGs are conservative

 If control may flow from stmt A to stmt B then there is an edge from A to B

 Opposite is not true!

 Problem is undecidable

 Over-approximation

 Real CFGs contain exceptional edges as well

 Otherwise unsound
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int y = x;

if (p)

if (!p)

b = y;

x = y;

z = 2;



Perform an analysis

 Analysis: What values are printed?

 Reaching definition analysis

int x = 1;

print(x);

if (z > 0) {

x = 2;

}

print(x);

 Use data flow analysis
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 Control flow

 Data flow

int x = 1;

print(x);

if (z > 0)

x = 2;

print(x);

𝑥 = ?

𝑥 = 1

𝑥 = 1

𝑥 = 1

𝑥 =1

𝑥 = 2

𝑥 ∈ {1, 2}



A more advanced example
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 Which assignments are unnecessary?

 Live variables analysis

int z = /* some value */;

int x = 1;

int y = 2;

if (z > 0) {

y = z;

if (z > 1) {

z = 7;

}

}

print(y);

 Findings

 Assignment to x and z can be eliminated

int z = // some val

int x = 1;

int y = 2;

if (z > 0)

y = z;

if (z > 1)

z = 7;

print(y);

∅

{𝑦} {𝑦}

{𝑦}

{𝑦, 𝑧}

{𝑧}
{𝑦, 𝑧}

{𝑦, 𝑧}

{𝑧}

{𝑧}

∅

Overwrite y, 

don’t need 

old y



That easy? How about loops?
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 Reaching definitions revisited

int x = 1;

while (/* some property */) {

++x;

}

print(x);

 Problem!

 This does not terminate

 Number of iterations must be bound

 We have a mathematical theory

 Monotone framework

int x = 1;

while( … )

++x;

print(x);

𝑥 =?

𝑥 = 1

𝑥 = 2

𝑥 = 1

𝑥 ∈ {2,3, … }𝑥 ∈ {1,2, … }

𝑥 ∈ {1,2, … }

𝑥 = 1



Monotone framework

1. Analysis direction (forward or backward)

2. Analysis domain (lattice)

3. Effect of statements on information (flow functions)

4. Initial values (values of the lattice)

5. Merge information (binary operator on sets of lattice values)
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 Algorithm fits on one slide

 It is not that hard, right?

Flow functions

Initial values

Concrete 

static 

analysis

Uniform 

evaluation 

algorithm
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 Algorithm fits on one slide

 It is not that hard, right?

Flow functions

Initial values

Concrete 

static 

analysis

Uniform 

evaluation 

algorithm



Intra- versus inter-procedural analysis: A call graph

void foo() {

bar(); // cs 1

}

void bar() {}

int main() {

foo(); // cs 2

bar(); // cs 3

return 0;

}

 It is not always that easy!

 Function pointers

 Virtual dispatch
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main
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Calling contexts

 Caution

 Monotone framework cannot be used directly for inter-procedural analysis: too imprecise!

 We have to consider calling contexts
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Problems with usable static analysis

 Precision versus performance

 Static analysis often does not scale well

 Massive runtimes and memory consumption

 Sophisticated solutions

 Often require (really) complex algorithms

 Abstractions making it even more difficult

 Undecidable problems
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Pros and cons of automated static analysis

 Fast(er than manual audits)

 Cheaper than manual audits

 Finds almost as much as manual audits

 Efficient for obvious vulnerabilities

 Detects useful hints for more complex programs

 Only requires basic knowledge of security to 
review warnings

 Less flexible than human analysts

 Difficulties staging complex attacks

 Cannot interpret human language

 Yields too many results

 False positives

 Irrelevant results

 Tough to implement
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Designing code analysis for large-scale software systems (DECA I + II)

 Lecturer: Eric Bodden

 Contents

 Intra-procedural data-flow analysis

 Call-graph construction algorithms

 Context-insensitive inter-procedural data-flow analysis

 Context-sensitivity using the call-strings approach

 Value-based context

 Context-sensitivity using the functional approach

 Efficiently solving distributed problems in the IFDS, IDE, and (S)(W)PDS frameworks

 Current challenges in inter-procedural static program analysis

 Applications to software security

 Check out the University‘s course catalogue or our Secure Software Engineering YouTube channel at 
https://www.youtube.com/channel/UCtdWi1oH1huXVXeeqHPbbzg
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https://www.youtube.com/channel/UCtdWi1oH1huXVXeeqHPbbzg


Also check out

 Lecture “Foundations of Programming Languages”, Christoph Reichenbach (now Lund University)

 SEPL Goethe University, Frankfurt am Main

 Have a look at the following YouTube playlist (one lecture unit)

 https://www.youtube.com/watch?v=sxiFwiCgoVo&list=PLgJZZQPiH1mHIZAyIF1baZbMpIzxXn90o

 Optimizations and static analysis

 What?

 Why?

 How?
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It is all about creativity: user-defined operators, close enough?

 You cannot define custom operators

 But how about that?

int a = 10;

int c = a /multiply/ 20;

int d = a /times/ c;

cout << c << '\n';

 This can be realized in C++

 Associativity (left or right) depends on how you 
overload operator/

 Do not use this in real projects!

#include <iostream>

enum _multiplication { times, multiply, mult, $cool$ };

// tiny int wrapper to trick the type system
struct _int {
_int(int i) : i(i) {}
// implicit conversion operator
operator int() const { return i; }
int i;

};

_int operator/(int i, _multiplication m) {
return _int(i);

}

int operator/(_int j, int k) { return j * k; }

int main() {
int a = 12 /times/ 2;
int b = 144 /$cool$/ 3;
int c = 4 /multiply/ 2 /mult/ 3;
std::cout << "a= " << a << ", b= " << b

<< ", c= " << c << '\n';
return 0;

}
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Jobs and theses

 Topic

 Static analysis

 C++ programming

 LLVM compiler framework

 Benefits

 Money ;-)

 Fun

 Learn a lot

 Invitations to our professional and social events

 Opportunities for bachelor and master theses

 Lots of career options

 Working on an important topic

 Just drop me an email
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Recap

 Program analysis

 Real-world findings

 Static code analysis

 Custom operator hack

 Next time

 Introduction to the final project
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Thank you for your attention
Questions?


