
!

C++ PROGRAMMING

Lecture 5

Secure Software Engineering Group

Philipp Dominik Schubert

CONTENTS

1. Error handling

A. Return codes

B. Assertions

C. Exceptions

2. Function pointers

3. std::function

© Heinz Nixdorf Institut / Fraunhofer IEM2

Error handling

 How to handle program errors?

 Depends on your problem(s)

 More important

 How to detect, recognize, and handle errors?

 Three (four) important mechanisms

A. Ignore

 Do not ignore errors

B. Return codes

C. Assertions (static and dynamic)

D. Exceptions

 Error handling is a very important part of computer programming!

© Heinz Nixdorf Institut / Fraunhofer IEM3

Error handling

 Remember our scalar_product() function

double scalar_product(const vector<double> &u, const vector<double> &v);

 What if u and v do not have the same length?

 Imagine you are a maths library implementer (who charges a lot of money ;-)

 Your costumers want code that works reliably

 They want to know when something goes wrong

 Rather than getting non-sense results

© Heinz Nixdorf Institut / Fraunhofer IEM4

Error handling

 Users of your library would like to know about an error or misuse of the scalar_product() function

 Why could this even happen?

 User has no clue about mathematics

 User has made a typo

 User has created the vectors dynamically (and something went wrong)

 User read data from ill-formatted file

 …

 There are lots of sources for errors

 Because we are humans!

© Heinz Nixdorf Institut / Fraunhofer IEM5

Why our world does not crash

 Our world heavily depends on critical software systems

 Nuclear power plants

 Planes

 Credit institutes

 Cars

 Trains

 Does your grandma use software?

 Yes, at the grocery store Cash registers

 When critical software fails

 People get injured

 People get financial ruined

© Heinz Nixdorf Institut / Fraunhofer IEM6

Why our world does not crash

 But how can you board an airplane without fear then?

1. Such systems are heavily restricted and standardized

 No new or delete after take-off (planes)

 No dynamic memory allocation at all (cars)

2. Use error handling (which we will cover today)

3. Use excessive testing

4. Use methods for formal verification, static and dynamic analysis

 Remember the valgrind memory analysis tool and Clang’s sanitizers

 Our group focuses on secure software engineering; I work in static analysis (later on)

5. Proving software is usually impossible (sometimes it is possible within a certain scope)

 Some credit institutes use languages like Haskell (a functional language)

6. Get the best people for the job

 Bjarne Stroustrup is managing directory for technology at Morgan Stanley

© Heinz Nixdorf Institut / Fraunhofer IEM7

Method I: Using return codes

Use a cleverly designed return code to report a problem:

#include <cmath>

double scalar_product(std::vector<double>& u,

std::vector<double>& v){

if (u.size() != v.size()) { return NAN; }

double result = 0;

for (size_t i = 0; i < v.size(); ++i){

result += u[i] * v[i];

}

return result;

}

// a caller might check if the result

// is nan (not a number)

// user generate some data

std::vector<double> a = {1 ,2, 3};

std::vector<double> b = {4, 5};

// user calls your function

double result = scalar_product(a, b);

// user checks for success

if (std::isnan(result)) {

std::cout << "something went wrong!\n";

} else

std::cout << "success\n";

}

© Heinz Nixdorf Institut / Fraunhofer IEM8

Introduction to special floating point numbers

 When working with floating point types

 NAN is quite common

 double value = pow(-1.0, NAN);

 NAN propagates through calculations

 Indicates that a value is not a number

 inf

 double value = 1.0 / 0.0;

 Represents positive infinity

 -inf

 double other = -(1.0 / 0.0);

 Represents negative infinity

 Useful functions to checks for these
values

#include <cmath>

std::isnan()

std::isfinite()

std::isinf()

std::isnormal()

 Have a look at:

http://en.cppreference.com/w/cpp/head
er/cmath

© Heinz Nixdorf Institut / Fraunhofer IEM9

http://en.cppreference.com/w/cpp/header/cmath

Introduction to special numbers

 Other important values? (on my 64 bit machine)

#include <cstddef>

#include <limits>

#include <iostream>

using namespace std;

int main() {

std::cout << "min int: " << std::dec << std::numeric_limits<int>::min() << ’\n’;

std::cout << "max int: " << std::dec << std::numeric_limits<int>::max() << ’\n’;

std::cout << "min unsigned: " << std::dec << std::numeric_limits<unsigned>::min() << ’\n’;

std::cout << "max unsigned: " << std::dec << std::numeric_limits<unsigned>::max() << ’\n’;

std::cout << "double epsilon: " << std::dec << std::numeric_limits<double>::epsilon() << ’\n’;

// min int: -2147483648

// max int: 2147483647

// min unsigned: 0

// max unsigned: 4294967295

// double epsilon: 2.22045e-16

return 0; }

10

Method I: Using return codes

 Common way of reporting success or failure

 The C programming language makes heavy use of it

 Functions that provide a return value are documented with an error code table

 Handle an error according to its type

 Return codes are quite common in C++ too

 That was not always the case

 Return codes are recommended in google’s internal C++ coding guidelines

 Sometimes return codes are not intuitive (remember scalar_product())

 Maybe scalar_product() returns NAN because one of the vectors’ entries was NAN

 Idea: change the signature to

int scalar_product(const vector<double> &u,

const vector<double> &v, double& result);

 Not smart!

© Heinz Nixdorf Institut / Fraunhofer IEM11

Method I: Using return codes

 Using a smarter version: C++17 std::optional

#include <iostream>

#include <optional>

#include <vector>

std::optional<double> scalar_product(

const std::vector<int> &u,

const std::vector<int> &v){

if (u.size() != v.size()) {

return std::nullopt;

}

double result = 0;

for (int i = 0; i < u.size(); ++i) {

result += u[i] * v[i];

}

return result;

}

int main() {

std::vector<int> a = {1, 2, 3};

std::vector<int> b = {4, 5, 6};

std::optional<double> r =

scalar_product(a, b);

if (r.has_value()) {

std::cout << r.value() << '\n';

}

std::optional<double> s =

scalar_product(a, {42, 43});

std::cout << "has value: “

<< s.has_value();

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM
12

Method II: Using assertions

 Find bugs using assertions

 Check if a certain condition holds

 If not, a hard error is reported

 Dynamic assert

 Evaluated at runtime

 Can be switched on and off

 Using the symbol: NDEBUG

 Affects (runtime) performance

 How to use dynamic assertions?

a) Develop code using dynamic assertions

b) Remove them with when you ship your
product

#include <iostream>

// uncomment to disable assert()

// #define NDEBUG

#include <cassert>

int main() {

assert(2 + 2 == 5);

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM
13

assert’s implementation

#ifdef NDEBUG

#define assert(condition) ((void)0)

#else

#define assert(condition) /* implementation defined */

#endif

 How to print an error message, too?

int main() {

assert(2 + 2 == 5);

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM14

int main() {

assert((2 + 2 == 5) && "This is false!");

return 0;

}

Method II: Using assertions

 Static assert

 Evaluated at compile time

 Compiler aborts compilation if a static
assertion fails

static_assert (bool_constexpr ,

message)

static_assert (bool_constexpr)

 If bool_constexpr returns …

 true, this declaration has no effect

 false, a compile-time error is
reported and the message is
displayed

 Message has to be a string literal

 Does not affect (runtime) performance

#include <iostream>

int main() {

static_assert(2 + 2 == 5,

"This is just false!");

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM14

Dynamic assertions versus static assertions

 Think about the following

 Errors are bad

 But an early error is a good error

 At least better than a late error

 C/C++: everything that can be done at compile time should be done at compile time!

 Discover an error early saves

 Time

 Money

 Nerves

 People

© Heinz Nixdorf Institut / Fraunhofer IEM15

Contracts, functions and invariants

 Functions …

 Get some input

 Do some useful work and produce a result

 Return some output

 A function can be viewed as a contract

 Preconditions

 Conditions that hold for the input before processing

 Postconditions

 Conditions that hold for the output after processing

 (class / struct) invariants

 Conditions that hold before and after processing

 If conditions are violated, the application of a function rarely makes sense

© Heinz Nixdorf Institut / Fraunhofer IEM16

Enforcing contracts using assertions

 A function is a contract

 Contracts can be enforced

 Conditions are checked using assertions

 Some conditions are hard or even impossible to
express

 Use a comment in natural language then!

 Comment your functions!

class Car {

private:

bool engine_running;

public:

bool is_running() {

return engine_running;

}

void stop() {

assert(is_running());

stop_engine();

assert(!is_running());

}

void start() {

assert(!is_running());

start_engine();

assert(isrunning());

}

};

© Heinz Nixdorf Institut / Fraunhofer IEM17

Type traits

 Introduced in C++11

 “Type traits defines a compile-time template-based
interface to query or modify the properties of
types.” [http://en.cppreference.com]

 Use #include <type_traits>

 Often implemented using SFINAE (later on)

 Type properties and different categories

1. Primary type categories

2. Composite type categories

3. Type properties

4. Supported operations

5. Property queries

6. Type relationships

 Example

#include <iostream>

#include <type_traits>

struct A {};

class B {};

int main() {

std::cout << std::boolalpha;

std::cout << std::is_class<A>::value << '\n';

std::cout << std::is_class::value << '\n';

std::cout << std::is_class<int>::value << '\n';

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM18

Method III: Using exceptions

 “Exception handling provides a way of transferring control and information from some point in the execution
of a program to a handler associated with a point previously passed by the execution …”

 “… in other words, exception handling transfers control up the call stack.”

 An exception can be thrown by

 Throw-expression

 Dynamic cast

 Typeid

 New-expression

 Allocation function

 And any of the STL functions specified to throw exceptions to signal a certain error condition

[http://en.cppreference.com/w/cpp/language/exceptions]

© Heinz Nixdorf Institut / Fraunhofer IEM19

Method III: Using exceptions

 … so an exception can be thrown to indicate an error

 An exception can be caught to handle the error

 In order for an exception to be caught …

 The throw-expressions has to be contained within a try-block

 Or inside a function that is called in a try-block

 And the catch clause has to match the type of the exception

[http://en.cppreference.com/w/cpp/language/exceptions]

 In summary

 A certain type of an exception can be thrown to indicate an error

 An exception can be caught with a catch clause

 The control flow is transferred to an “earlier” point at which the error can be handled

 There are some places where you should not throw!

 This is necessary to guarantee resource safety

© Heinz Nixdorf Institut / Fraunhofer IEM20

Method III: Using exceptions

#include <iostream>

#include <stdexcept>

int main() {

std::vector<double> v = {11, 12, 13};

double& value = get(v, 0);

std::cout << value << ’\n’;

try {

double& other = get(v, 100);

std::cout << other << ’\n’;

} catch (std::out_of_range& e) {

std::cout << "error: " << e.what();

}

return 0;

}

double& get(std::vector<double>& v,

size_t idx) {

if (idx >= v.size()) {

// at this point we are in trouble

throw std::out_of_range("idx: "

+ to_string(idx) + "out of range!");

} else {

return v[idx];

}

}

 The out_of_range exception transfers the
control flow back to the callers catch block!

 The catch block is called exception handler!

© Heinz Nixdorf Institut / Fraunhofer IEM21
[Figure taken from images.google.de]

Method III: Using exceptions

 An exception is a class that contains all information necessary to perform the job

 #include <stdexcept> defines, among others, the following useful exception types

 std::logic_error

 std::invalid_argument

 std::domain_error

 std::length_error

 std::out_of_range

 std::runtime_error

 std::range_error

 std::overflow_error

 std::underflow_error

 You can write your own exception as well

 Inherit from an exception class and adjust it to your needs (maybe later on)

© Heinz Nixdorf Institut / Fraunhofer IEM22

Method III: Using exceptions

 Please don’t

#include <iostream>

#include <stdexcept>

int main() try {

std::cout << "I am trying\n";

throw std::runtime_error("error");

} catch (std::runtime_error &e) {

std::cout << “Something went wrong!\n";

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM23
[Figure taken from images.google.de]

What about our scalar product?

 What handling would be adequate?

 Return codes / assertions / exceptions?

#include <stdexcept>

#include <cmath>

double scalar_product(std::vector<double> &u,

std::vector<double> &v){

if (u.size() != v.size()){

throw std::logic_error("wrong imensions");

}

double result = 0;

for (size_t i = 0; i < u.size(); ++i){

result += u[i] * v[i];

}

return result;

}

// user generate some data

std::vector<double> a = {1 ,2, 3};

std::vector<double> b = {4, 5};

// user calls your function

double result;

try {

result = scalar_product(a, b);

} catch (std::logic_error& e) {

// perform adequate steps

// perhaps inform the user

std::cout << "scalar_product has

thrown!\n";

std::cout << e.what();

}
© Heinz Nixdorf Institut / Fraunhofer IEM25

Never catch like this

#include <stdexcept>

#include <cmath>

double scalar_product(std::vector<double> &u,

std::vector<double> &v){

if (u.size() != v.size()){

throw std::logic_error("wrong imensions");

}

double result = 0;

for (size_t i = 0; i < u.size(); ++i){

result += u[i] * v[i];

}

return result;

}

// user generate some data

std::vector<double> a = {1 ,2, 3};

std::vector<double> b = {4, 5};

// user calls your function

double result;

try {

result = scalar_product(a, b);

} catch (std::logic_error& e) {

// ah, just ignore

}

 These things can be seen in real-world code

© Heinz Nixdorf Institut / Fraunhofer IEM25

Re-throwing is possible as well

#include <stdexcept>

#include <cmath>

double scalar_product(std::vector<double> &u,

std::vector<double> &v){

if (u.size() != v.size()){

throw std::logic_error("wrong imensions");

}

double result = 0;

for (size_t i = 0; i < u.size(); ++i){

result += u[i] * v[i];

}

return result;

}

© Heinz Nixdorf Institut / Fraunhofer IEM26

// user generate some data

vector<double> a = {1 ,2, 3};

vector<double> b = {4, 5};

// more code

// user calls your function

double result;

try {

result = scalar_product(a, b);

} catch (std::logic_error& e) {

// the next try – catch – block

// should take care

throw;

// now we go even further upwards

// and look for another matching

// catch (std::logic_error e)

}

// more code

int main() {

try {

A a(2);

A b(4);

// more code …

throw std::runtime_error("crash");

} catch (std::runtime_error &e) {

std::cout << "gotcha\n";

}

return 0;

}

Stack unwinding

 There are books and papers on this topic

 See http://en.cppreference.com/w/cpp/language/throw

 The principle is not that complicated

#include <iostream>

#include <stdexcept>

struct A {

A(size_t size) : mem(new int[size]) {}

~A() { delete[] mem; }

int *mem;

};

 There are no leaks!

© Heinz Nixdorf Institut / Fraunhofer IEM27

http://en.cppreference.com/w/cpp/language/throw

Problems when unwinding the stack

 When exception handling fails and the stack cannot be unwound terminate() is called

 terminate() is called whenever

 an exception is not caught

 an exception is thrown while exception handling

 … there are some more cases

 std::terminate() calls

 terminate_handler()

 The terminate handler usually leads to hard program termination

 But you can install your own terminate handler with set_terminate()

void myHandler() { std::cout << "My own termination handler!"; std::abort(); };

int main() {

// set terminate handler

std::set_terminate(&myHandler);

throw std::runtime_error("crash");

}

© Heinz Nixdorf Institut / Fraunhofer IEM28

Specifying functions as noexcept

 Functions can be specified to be guaranteed not to throw an exception

 For example small and simple functions that do not throw

int add(int a, int b) noexcept {

return a + b;

}

 This keyword is first about semantics

 You can immediately see that this function does not throw

 As useful as specifying a member function as const if it does not modify its data members

 May lead to a performance increase, compilers may generate faster code

 Please do not use it blindly caution: transitivity

 If you lie to the compiler and you throw in a function marked as noexcept?

 std::terminate() will be called, which causes program termination

 Do not lie to the compiler

© Heinz Nixdorf Institut / Fraunhofer IEM29

Specifying functions as throw?

 Functions can be specified to indicate that they may throw

 Consider

double& give_me(std::vector<double> &v, size_t idx) throw(std::out_of_range) {

if (idx >= v.size()) {

throw out_of_range("idx out of range");

}

return v[idx];

}

 It is about semantics

 You know what it throws

 You know that you must have a corresponding exception handler

 But it is not good practice to use it don’t do it

 Compiler cannot check if std::out_of_range is thrown or something else

 The annotation was a bad idea

© Heinz Nixdorf Institut / Fraunhofer IEM30

Why should I care about all the specifiers and qualifiers?

 Reading code is not always easy

 Using specifiers and qualifiers helps

 Good code should document itself

 Code should immediately tell you what it does

 Otherwise rewrite it

 Find useful names for variables, functions, structs, classes, unions, enums

© Heinz Nixdorf Institut / Fraunhofer IEM31

Why should I care about all the specifiers and qualifiers?

 You might have noticed:

 When you read a function declaration you should immediately …

 know what it does

 know how it has to be used

 know how it behaves

 but not necessarily how it does its job

 Otherwise rewrite your code

matrix matrix_multiply(const matrix &a, const matrix &b);

int add(int a, int b) noexcept;

class Vec3 {

private:

double x, y, z;

public:

constexpr Vec3(double a, double b, double c) noexcept;

constexpr double euclidean_length() const noexcept;

};

© Heinz Nixdorf Institut / Fraunhofer IEM32

Pros and cons exceptions [found on stack overflow]

 Pro

 Separate error-handling code from normal
program flow

 Throwing exceptions is the only clean way to
report an error in constructors

 Hard to ignore

 Easily propagated from deeply nested functions

 Carry much more information than an error
code

 Exception objects are matched to the handlers
using the type system

 Automatic stack unwinding

 Con

 Break code structure by creating invisible exit
points that make code hard to read

 Easily lead to resource leaks when used wrong

 Learning to write exception safe code is hard

 Expensive and break the paradigm: only pay for
what you use

 Hard to introduce to legacy code

 Easily abused for performing tasks that belong
to normal program flow

© Heinz Nixdorf Institut / Fraunhofer IEM34

When to use what?

 A rule of thumb (found on stack overflow)

 Use assertions to catch your own errors

 Use assertions for functions and data that are internal to your system

 Use exceptions to catch other peoples errors

 To check preconditions in public API’s

 API = application programming interface

 When dealing with external data that is not under your control

 Return codes are the poor man’s exceptions

© Heinz Nixdorf Institut / Fraunhofer IEM34

“You cannot throw in destructors and you should not throw in constructors!”

 You cannot throw in destructors

 Think of a dynamically allocated array of variables of user defined types

 delete[]

 What happens if an exception is thrown while destructing the 2th element?

 Abort?

 You leak!

 Ignore and continue destructing the remaining variables?

 C++ can only have one outstanding exception!

 If another exception is thrown you are doomed

 You leak!

 “Do you feel lucky […]?”

© Heinz Nixdorf Institut / Fraunhofer IEM36

“You cannot throw in destructors and you should not throw in constructors!”

 You should not throw in constructors

 What happens if an exception is thrown within the constructor?

 You fail half way

 The variable is not set up correctly

 Destructor cannot be called

 No stack unwinding can be performed

 You have to do it yourself

 Using a return code is not possible

 Constructors do not have a return value

© Heinz Nixdorf Institut / Fraunhofer IEM37

Pointers again

 Remember pointers

int i = 42;

int *i_ptr = &i; // i_ptr points to i

 So far we have only seen pointers to variables

 But more bizarre pointers are possible functions have addresses, too

 Pointers to functions

 How does that look like?

int (*f)(int, int) = nullptr;

 f is a variable of type function pointer to function of type int (int, int)

 In other words: f can point to every function that matches this signature

 Getting two integers as parameters

 Returning an integer

© Heinz Nixdorf Institut / Fraunhofer IEM37

Pointers to functions

#include <iostream>

int mult(int a, int b) {

return a * b;

}

int perform_binary_operation(int a,

int b,

int (*f)(int, int)) {

return f(a, b);

}

int main() {

int result =

perform_binary_operation(4,

5,

&mult);

std::cout << result << ’\n’;

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM39

Why is that useful?

 Now we can pass functions as parameters

 Remember our integrator program integrator.cpp

#include <iostream>

#include <cmath> // we use the 'abs()' function

long double integrate(const long double from, const long double to,

const size_t N, long double (*function) (long double)) {

long double integral_val = 0.0;

long double x = from;

const long double step_width = std::abs(from-to) / static_cast<long double>(N);

for (size_t n = 0; n < N; ++n) {

integral_val += function(x);

x += step_width;

}

return integral_val / N; }

© Heinz Nixdorf Institut / Fraunhofer IEM40

 We have abstracted away a concrete function

 A user of integrate() can just pass a function

pointer

 We can know integrate everything that matches

the signature

The std::function wrapper

 Fiddling with raw function pointers is not very handy

 Use a wrapper type

#include <functional>

int add(int a, int b) { return a + b; }

int perform_binary_operation(int a, int b, std::function<int(int, int)> f) {

return f(a, b);

}

int main() {

int result = perform_binary_operation(2, 6, add);

std::cout << result << ’\n’;

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM41

 When using function pointers you do not need the ‘&’

Recap

 Why error handling is important

 Return codes

 Assertions

 Exceptions

 Special floating point values

 Functions and templates to check types and their properties

 When to use what kind of error handling

 Function pointers

 std::function

© Heinz Nixdorf Institut / Fraunhofer IEM44

Thank you for your attention
Questions?

