C++ PROGRAMMING

Lecture 5
Secure Software Engineering Group

Philipp Dominik Schubert

C

~ Fraunhofer

IEM

HEINZ NIXDORF INSTITUT

SECURE
SOFTWARE ENGINEERING

CONTENTS

1. Error handling
A. Return codes
B. Assertions
C. Exceptions
2. Function pointers

3. std::function

HEINZ NIXDORF INSTITUT =~ Fraunhofer

2 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM UNIVERSITAT PADERBORN IEM

Error handling

How to handle program errors?
= Depends on your problem(s)

More important
= How to detect, recognize, and handle errors?

Three (four) important mechanisms
A. Ignore

= Do not ignore errors
B. Return codes
C. Assertions (static and dynamic)
D. Exceptions

Error handling is a very important part of computer programming!

\

3 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Error handling

= Remember our scalar product () function

double scalar product (const vector<double> &u, const vector<double> &v) ;

= What if u and v do not have the same length?
* |magine you are a maths library implementer (who charges a lot of money ;-)
= Your costumers want code that works reliably
= They want to know when something goes wrong
= Rather than getting non-sense results

\

4 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer

IEM

Error handling

= Users of your library would like to know about an error or misuse of the scalar product () function
= Why could this even happen?

= User has no clue about mathematics

= User has made a typo

= User has created the vectors dynamically (and something went wrong)

= User read data from ill-formatted file

= There are lots of sources for errors

= Because we are humans!

\

5 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Why our world does not crash

= Qur world heavily depends on critical software systems

Nuclear power plants

Planes

Credit institutes

Cars

Trains

Does your grandma use software?

= Yes, at the grocery store - Cash registers
When critical software fails

= People get injured

= People get financial ruined

6 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

HEINZ NIXDORF INSTITUT

\

~ Fraunhofer

IEM

Why our world does not crash

= But how can you board an airplane without fear then?

1.

Such systems are heavily restricted and standardized
* No new or delete after take-off (planes)

= No dynamic memory allocation at all (cars)

2. Use error handling (which we will cover today)

3. Use excessive testing

4. Use methods for formal verification, static and dynamic analysis

= Remember the valgrind memory analysis tool and Clang’s sanitizers
= Qur group focuses on secure software engineering; | work in static analysis (later on)

. Proving software is usually impossible (sometimes it is possible within a certain scope)

= Some credit institutes use languages like Haskell (a functional language)

. Get the best people for the job

= Bjarne Stroustrup is managing directory for technology at Morgan Stanley

\

© Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % FraunhOfer
IEM

Method I: Using return codes

Use a cleverly designed return code to report a problem:

#include <cmath>

double scalar product(std::vector<double>& u,
std: :vector<double>& V) {

if (u.size() '= v.size()) { return NAN;

double result = 0;
for (size t 1 = 0; 1 < v.size();
result += ul[i] * v[i];

}

return result;

8 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

++1) {

}

// a caller might check if the result

// 1s nan (not a number)

// user generate some data
std: :vector<double> a = {1 ,2, 3};
std: :vector<double> b = {4, 5},
// user calls your function
double result = scalar product(a, b);
// user checks for success
if (std::isnan(result)) {
std::cout << "something went wrong!\n'";
} else

std: :cout << "success\n'";

HEINZ NIXDORF INSTITUT ~ Fraunhofer
IEM

Introduction to special floating point numbers

= When working with floating point types

= NAN IS quite common
" double value = pow(-1.0, NAN);
= NAN propagates through calculations
* |ndicates that a value is not a number

= inf
" double value = 1.0 / 0.0;
» Represents positive infinity

= —-inf
*= double other = -(1.0 / 0.0);
» Represents negative infinity

) ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

Useful functions to checks for these
values

#include <cmath>

std:
std:
std:
std:

:isnan ()
:isfinite ()
:isinf ()
:isnormal ()

Have a look at:

http://en.cppreference.com/w/cpp/head

er/cmath

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer
IEM

http://en.cppreference.com/w/cpp/header/cmath

Introduction to special numbers

= Other important values? (on my 64 bit machine)

#incl
#incl
#incl
using

int m

std:
std:
std:
std:

std:

//
//
//
//
//

ret

10 |

ude <cstddef>
ude <limits>
ude <iostream>
namespace std;
ain() {
:cout << "min int: " << std::dec << std::numeric limits<int>::min() << “\n’;
:cout << "max int: " << std::dec << std::numeric limits<int>::max() << '\n’;
:cout << "min unsigned: " << std::dec << std::numeric limits<unsigned>::min() << "\n’;
:cout << "max unsigned: " << std::dec << std::numeric limits<unsigned>::max() << "\n’;
:cout << "double epsilon: " << std::dec << std::numeric limits<double>::epsilon() << "\n’;
min int: -2147483648

max int: 2147483647

min unsigned: 0

max unsigned: 4294967295
double epsilon: 2.22045e-16

urn 0; }

HEINZ NIXDORF INSTITUT

\

~ Fraunhofer

IEM

Method I: Using return codes

= Common way of reporting success or failure
= The C programming language makes heavy use of it
» Functions that provide a return value are documented with an error code table
= Handle an error according to its type
= Return codes are quite common in C++ too
= That was not always the case
» Return codes are recommended in google’s internal C++ coding guidelines
= Sometimes return codes are not intuitive (remember scalar product())
= Maybe scalar product () returns NAN because one of the vectors’ entries was NAN
= |dea: change the signature to
int scalar product (const vector<double> &u,
const vector<double> &v, double& result);

= Not smart!

\

11 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Method I: Using return codes

= Using a smarter version: C++17 std: :optional int main() {

#include <iostream> std::vector<int> a = {1, 2, 3};

' < ' > .
#include <optional std: :vector<int> b = {4, 5, 6};

#include <vector>

, std: :optional<double> r =
std::optional<double> scalar product (

const std::vector<int> &u, scalar product(a, b);
const std::vector<int> &v) { if (r.has value()) {
if (u.size() '= v.size()) { std::cout << r.value() << ;
return std::nullopt; }
} std: :optional<double> s =
double result = 0;

| | . . . scalar product(a, {42, 43});
for (int i = 0; i1 < u.size(); ++1i) { -

result += u[i] * v[i]; std::cout <<
} << s.has value();
return result; return 0;

} }

12 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Method Il: Using assertions

» Find bugs using assertions
= Check if a certain condition holds
= |f not, a hard error is reported

= Dynamic assert
= Evaluated at runtime
» Can be switched on and off
= Using the symbol: NDEBUG
= Affects (runtime) performance

= How to use dynamic assertions?
a) Develop code using dynamic assertions
b) Remove them with when you ship your

product

13 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

#include <iostream>
// uncomment to disable assert ()
// #define NDEBUG

#include <cassert>

int main() {
assert(2 + 2 == 5);

return 0;

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer

IEM

assert’s implementation

#ifdef NDEBUG
#define assert (condition) ((void)O0)
#else

#define assert (condition) /* implementation defined */

#fendif

= How to print an error message, too?

int main() { int main() {
assert (2 + 2 == 5); assert((2 + 2 == 5) && "This 1s false!l");

return 0O;
return 0;

\

14 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Method Il: Using assertions

= Static assert
= Evaluated at compile time

= Compiler aborts compilation if a static
assertion fails

static assert (bool constexpr ,
message)

static assert (bool constexpr)
* Ifbool constexpr returns ...

= true, this declaration has no effect

» false, acompile-time erroris
reported and the message is
displayed

= Message has to be a string literal
= Does not affect (runtime) performance

14 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

#include <iostream>

int main() {
static assert(2 + 2 == 5,
"This is just false!");

return 0;

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer

IEM

Dynamic assertions versus static assertions

= Think about the following

Errors are bad
But an early error is a good error
= At |east better than a late error

C/C++: everything that can be done at compile time should be done at compile time!

Discover an error early saves
= Time

= Money

= Nerves

= People

© Heinz Nixdorf Institut / Fraunhofer IEM

HEINZ NIXDORF INSTITUT

\

~ Fraunhofer

IEM

Contracts, functions and invariants

= Functions ...
= Get some input
= Do some useful work and produce a result
= Return some output

= A function can be viewed as a contract

Preconditions
= Conditions that hold for the input before processing

Postconditions
= Conditions that hold for the output after processing

(class/ struct) invariants

= Conditions that hold before and after processing

If conditions are violated, the application of a function rarely makes sense

\

16 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Enforcing contracts using assertions class Car {

private:

bool engine running;

= A function is a contract

public:
= Contracts can be enforced bool is running() {
= Conditions are checked using assertions return engine_running;
= Some conditions are hard or even impossible to }
express void stop() {
= Use a comment in natural language then! assert (is_running());

_ stop engine() ;
= Comment your functions! . .
assert (!'is running());

}

void start() {
assert(!'is running());
start engine() ;

assert (isrunning()) ;

\

17 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Type traits

Introduced in C++11 = Example

= “Type traits defines a compile-time template-based #include <iostream>
interface to query or modify the properties of

, #include <type traits>
typeS. [http://en.cppreference.com]

» Use #include <type traits>
- struct A {};

= Often implemented using SFINAE (later on) class B {};

= Type properties and different categories

1. Primary type categories int main() {

2. Composite type categories std::cout << std::boolalpha;

3. Type properties std::cout << std::is class<A>::value << '\n';
4. Supported operations std::cout << std::is class::value << '\n';
5. Property queries std::cout << std::is class<int>::value << '"\n';
6. Type relationships return 0;

\

18 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Method lIl: Using exceptions

= “Exception handling provides a way of transferring control and information from some point in the execution
of a program to a handler associated with a point previously passed by the execution ...”

= “ .. in other words, exception handling transfers control up the call stack.”

= An exception can be thrown by
= Throw-expression

= Dynamic cast
= Typeid

= New-expression

= Allocation function

= And any of the STL functions specified to throw exceptions to signal a certain error condition

[http://en.cppreference.com/w/cpp/language/exceptions]

—
19 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Method IlI: Using exceptions

= ... SO an exception can be thrown to indicate an error

An exception can be caught to handle the error

In order for an exception to be caught ...

»= The throw-expressions has to be contained within a try-block
= Orinside a function that is called in a try-block

= And the catch clause has to match the type of the exception

[http://en.cppreference.com/w/cpp/language/exceptions]

In summary
= A certain type of an exception can be thrown to indicate an error
= An exception can be caught with a catch clause
= The control flow is transferred to an “earlier” point at which the error can be handled
= There are some places where you should not throw!
» This is necessary to guarantee resource safety

\

20 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Method lll: Using exceptions

#include <iostream> ble& get(std::vector<double>& v,

#finclude <stdexcept> size t idx) {

int main() {

std: :vector<double> v = {11, 12, 13};

(idx >= v.size()) {

// at this point we are in trouble

double& value = get(v, 0); throw std::out of range("idx: "

std::cout << value << "\n’; . |
+ to string(idx) + "out of rangel!');

} else {

try {
double& other = get (v, 100);
return v[idx];
std: :cout << other << "\n’;
} catch (std::out of rangeé& e) { }
std::cout << "error: " << e.what(); }

} = The out of range exception transfers the

control flow back to the callers catch block!
return 0;

} = The catch block is called exception handler!
==
21 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer

[Figure taken from images.google.de] IEM

Method IlI: Using exceptions

= An exception is a class that contains all information necessary to perform the job
» #include <stdexcept> defines, among others, the following useful exception types
" std::logic error
" std::invalid argument
" std::domain error
" std::length error
" std::out of range
" std::runtime error
" std::range error
" std::overflow error
" std::underflow error
= You can write your own exception as well
= Inherit from an exception class and adjust it to your needs (maybe later on)

\

22 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Method lll: Using exceptions

= Please don’t

#include <iostream>

#include <stdexcept> Do or Do Not.
TﬁauC%?&@T?y.
int main() try { N
std: :cout << ;
throw std::runtime error () ;

} catch (std::runtime error &e) {
std: :cout <<

return 0O;

\

23 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
[Figure taken from images.google.de] IEM

What about our scalar product?

= What handling would be adequate?
= Return codes / assertions / exceptions?
#include <stdexcept>
#include <cmath>
double scalar product(std::vector<double> &u,
std: :vector<double> &v) {
if (u.size() '= v.size()){

throw std::logic error("wrong imensions');

}

double result = 0;

for (size t 1 = 0; 1 < u.size(); ++1){
result += ul[i] * v[i];

}

return result;

25 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

// user generate some data
std::vector<double> a = {1 ,2, 3};
std::vector<double> b = {4, 5};
// user calls your function
double result;
try {
result = scalar product(a, b);
} catch (std::logic erroré& e) {
// perform adequate steps
// perhaps inform the user
std::cout << "scalar product has
thrown!\n";

std: :cout << e.what();

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer
IEM

Never catch like this

#include <stdexcept>

#include <cmath>

double scalar product(std::vector<double> &u,
std: :vector<double> &v) {

if (u.size() '= v.size()){

throw std::logic error("wrong imensions');

}
double result = 0;

for (size t 1 = 0; i < u.size();
result += ul[i] * v[i];

}

return result;

25 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

++1) {

// user generate some data

std: :vector<double> a = {1 ,2, 3};

std: :vector<double> b = {4, 5},
// user calls your function
double result;
try {
result = scalar product(a, b);
} catch (std::logic erroré& e) {
// ah, just ignore

}

= These things can be seen in real-world code

\

HEINZ NIXDORF INSTITUT

~ Fraunhofer

IEM

Re-throwing is possible as well

#include <stdexcept>

#include <cmath>

double scalar product(std::vector<double> &u,
std: :vector<double> &v) {

if (u.size() '= v.size()){

throw std::logic error("wrong imensions');

}
double result = 0;

for (size t 1 = 0; i < u.size();
result += ul[i] * v[i];

}

return result;

26 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

++1) {

// user generate some data
vector<double> a = {1 ,2, 3};
vector<double> b = {4, 5};
// more code
// user calls your function
double result;
try {
result = scalar product(a, b);
} catch (std::logic erroré& e) {
// the next try - catch - block
// should take care
throw;
// now we go even further upwards
// and look for another matching
// catch (std::logic error e)

}

// more code

HEINZ NIXDORF INSTITUT ~ Fraunhofer
IEM

\

Stack unwinding

= There are books and papers on this topic

int main() {

= See http://en.cppreference.com/w/cpp/lanquage/throw try {
= The principle is not that complicated A al(2);
#include <iostream> A b(4);

#include <stdexcept>
struct A {
A(size t size) mem(new int[size]) {} }
~A() { delete[] mem; }
int *mem; }
};
= There are no leaks! }

27 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

// more code ..
throw std::runtime error("crash");
catch (std::runtime error &e) {

std::cout << "gotcha\n";

return 0;

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer

IEM

http://en.cppreference.com/w/cpp/language/throw

Problems when unwinding the stack

= When exception handling fails and the stack cannot be unwound = terminate () Iis called
= terminate () Iis called whenever
= an exception is not caught
= an exception is thrown while exception handling
= ... there are some more cases
= std::terminate () calls

" terminate handler ()

= The terminate handler usually leads to hard program termination
= But you can install your own terminate handler with set terminate ()

void myHandler () { std::cout << "My own termination handler!"; std::abort(); };
int main() {

// set terminate handler

std::set terminate (&myHandler) ;

throw std::runtime error("crash');

}

28 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

\

Specifying functions as noexcept

* Functions can be specified to be guaranteed not to throw an exception

» For example small and simple functions that do not throw

int add(int a, int b) noexcept {
return a + b;

}

= This keyword is first about semantics

= You can immediately see that this function does not throw

= As useful as specifying a member function as const if it does not modify its data members
= May lead to a performance increase, compilers may generate faster code

= Please do not use it blindly - caution: transitivity
= |f you lie to the compiler and you throw in a function marked as noexcept?

" std::terminate () will be called, which causes program termination

*= Do not lie to the compiler

\

29 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Specifying functions as throw?

= Functions can be specified to indicate that they may throw
= Consider

double& give me(std::vector<double> &v, size t 1dx) throw(std::out of range) {
if (idx >= v.size()) {
throw out of range("idx out of range");

}

return v[idx];

}
= |tis about semantics
* You know what it throws
= You know that you must have a corresponding exception handler
= But it is not good practice to use it > don’t do it
= Compiler cannot check if std: :out of range is thrown or something else

= The annotation was a bad idea

\

30 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Why should | care about all the specifiers and qualifiers?

= Reading code is not always easy
= Using specifiers and qualifiers helps
»= Good code should document itself
= Code should immediately tell you what it does
= Otherwise rewrite it
» Find useful names for variables, functions, structs, classes, unions, enums

\

31 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Why should | care about all the specifiers and qualifiers?

= You might have noticed:
= When you read a function declaration you should immediately ...
know what it does
know how it has to be used
know how it behaves
but not necessarily how it does its job
= QOtherwise rewrite your code

matrix matrix multiply(const matrix &a, const matrix &b);

int add(int a, int b) noexcept;
class Vec3 {
private:
double x, vy, zZ;
public:
constexpr Vec3(double a, double b, double c) noexcept;

constexpr double euclidean length() const noexcept;

};

—
32 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

PrOS and COnS eXCepthnS [found on stack overflow]

= Pro

= Separate error-handling code from normal
program flow

= Throwing exceptions is the only clean way to
report an error in constructors

= Hard to ignore
= Easily propagated from deeply nested functions

= Carry much more information than an error
code

= EXception objects are matched to the handlers
using the type system

= Automatic stack unwinding

34 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

Con

Break code structure by creating invisible exit
points that make code hard to read

Easily lead to resource leaks when used wrong
Learning to write exception safe code is hard

Expensive and break the paradigm: only pay for
what you use

Hard to introduce to legacy code

Easily abused for performing tasks that belong
to normal program flow

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer
IEM

When to use what?

= Arule of thumb (found on stack overflow)

= Use assertions to catch your own errors

= Use assertions for functions and data that are internal to your system
= Use exceptions to catch other peoples errors

= To check preconditions in public API’s

= API = application programming interface

= When dealing with external data that is not under your control

= Return codes are the poor man’s exceptions

\

34 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

“You cannot throw in destructors and you should not throw in constructors!”

= You cannot throw in destructors
= Think of a dynamically allocated array of variables of user defined types
" delete]]
= What happens if an exception is thrown while destructing the 2th element?
= Abort?
= =>» You leak!
» |gnore and continue destructing the remaining variables?
= C++ can only have one outstanding exception!

= |f another exception is thrown you are doomed
= =>» You leak!

= “Do you feel lucky [...]?”

\

36 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

“You cannot throw in destructors and you should not throw in constructors!”

= You should not throw in constructors
= What happens if an exception is thrown within the constructor?
* You fail half way
= The variable is not set up correctly
= =>» Destructor cannot be called
= No stack unwinding can be performed
= You have to do it yourself
= Using a return code is not possible
= Constructors do not have a return value

\

37 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Pointers again

= Remember pointers
int 1 = 42;
int *i ptr = &i; // i ptr points to i
= So far we have only seen pointers to variables
= But more bizarre pointers are possible - functions have addresses, too
= Pointers to functions ©
= How does that look like?
int (*f) (int, int) = nullptr;
= f |s avariable of type function pointer to function of type int (int, int)
» In other words: £ can point to every function that matches this signature
= Getting two integers as parameters
= Returning an integer

\

37 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Pointers to functions

#include <iostream>

int mult(int a, int b) {

return a * b;

int perform binary operation(int a,

return f(a, b);

39 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

int b,
int (*f) (int,

int main() {
int result =

perform binary operation (4,

Sy
&mult) ;
std::cout << result <L ;
return 0;
}
int)) A
—

HEINZ NIXDORF INSTITUT ~ Fraunhofer
IEM

Why is that useful? - We have abstracted away a concrete function

= Auserof integrate () can just pass a function

pointer
= Now we can pass functions as parameters - We can know integrate everything that matches
= Remember our integrator program integrator.cpp the signature

#include <iostream>
#include <cmath> // we use the 'abs()' function
long double integrate(const long double from, const long double to,
const size t N, long double (*function) (long double)) {
long double integral val = 0.0;
long double x = from;
const long double step width = std::abs(from-to) / static cast<long double>(N) ;
for (size t n = 0; n < N; ++n) {
integral val += function(x);
x += step width;
}

return integral val / N; }

—
40 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

The std: : function wrapper

» Fiddling with raw function pointers is not very handy

= Use a wrapper type

#include <functional>

int add(int a, int b) { return a + b; }

int perform binary operation(int a, int b, std::function<int(int, 1int)> f) {
return f(a, b);

}

int main() {
int result = perform binary operation(2, 6, add);
std::cout << result << "\n’;

= When using function pointers you do not need the ‘s’
return 0O;

\

41 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Recap

= Why error handling is important

= Return codes

= Assertions

= Exceptions

= Special floating point values

* Functions and templates to check types and their properties
= When to use what kind of error handling

* Function pointers

" std::function

\

44 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Thank you for your attention
Questions?

-
HEINZ NIXDORF INSTITUT =%
UNIVERSITAT PADERBORN Za FraunhOfﬂ

