
!

C++ PROGRAMMING

Lecture 5

Secure Software Engineering Group

Philipp Dominik Schubert

CONTENTS

1. Error handling

A. Return codes

B. Assertions

C. Exceptions

2. Function pointers

3. std::function

© Heinz Nixdorf Institut / Fraunhofer IEM2

Error handling

 How to handle program errors?

 Depends on your problem(s)

 More important

 How to detect, recognize, and handle errors?

 Three (four) important mechanisms

A. Ignore

 Do not ignore errors

B. Return codes

C. Assertions (static and dynamic)

D. Exceptions

 Error handling is a very important part of computer programming!

© Heinz Nixdorf Institut / Fraunhofer IEM3

Error handling

 Remember our scalar_product() function

double scalar_product(const vector<double> &u, const vector<double> &v);

 What if u and v do not have the same length?

 Imagine you are a maths library implementer (who charges a lot of money ;-)

 Your costumers want code that works reliably

 They want to know when something goes wrong

 Rather than getting non-sense results

© Heinz Nixdorf Institut / Fraunhofer IEM4

Error handling

 Users of your library would like to know about an error or misuse of the scalar_product() function

 Why could this even happen?

 User has no clue about mathematics

 User has made a typo

 User has created the vectors dynamically (and something went wrong)

 User read data from ill-formatted file

 …

 There are lots of sources for errors

 Because we are humans!

© Heinz Nixdorf Institut / Fraunhofer IEM5

Why our world does not crash

 Our world heavily depends on critical software systems

 Nuclear power plants

 Planes

 Credit institutes

 Cars

 Trains

 Does your grandma use software?

 Yes, at the grocery store  Cash registers

 When critical software fails

 People get injured

 People get financial ruined

© Heinz Nixdorf Institut / Fraunhofer IEM6

Why our world does not crash

 But how can you board an airplane without fear then?

1. Such systems are heavily restricted and standardized

 No new or delete after take-off (planes)

 No dynamic memory allocation at all (cars)

2. Use error handling (which we will cover today)

3. Use excessive testing

4. Use methods for formal verification, static and dynamic analysis

 Remember the valgrind memory analysis tool and Clang’s sanitizers

 Our group focuses on secure software engineering; I work in static analysis (later on)

5. Proving software is usually impossible (sometimes it is possible within a certain scope)

 Some credit institutes use languages like Haskell (a functional language)

6. Get the best people for the job

 Bjarne Stroustrup is managing directory for technology at Morgan Stanley

© Heinz Nixdorf Institut / Fraunhofer IEM7

Method I: Using return codes

Use a cleverly designed return code to report a problem:

#include <cmath>

double scalar_product(std::vector<double>& u,

std::vector<double>& v){

if (u.size() != v.size()) { return NAN; }

double result = 0;

for (size_t i = 0; i < v.size(); ++i){

result += u[i] * v[i];

}

return result;

}

// a caller might check if the result

// is nan (not a number)

// user generate some data

std::vector<double> a = {1 ,2, 3};

std::vector<double> b = {4, 5};

// user calls your function

double result = scalar_product(a, b);

// user checks for success

if (std::isnan(result)) {

std::cout << "something went wrong!\n";

} else

std::cout << "success\n";

}

© Heinz Nixdorf Institut / Fraunhofer IEM8

Introduction to special floating point numbers

 When working with floating point types

 NAN is quite common

 double value = pow(-1.0, NAN);

 NAN propagates through calculations

 Indicates that a value is not a number

 inf

 double value = 1.0 / 0.0;

 Represents positive infinity

 -inf

 double other = -(1.0 / 0.0);

 Represents negative infinity

 Useful functions to checks for these
values

#include <cmath>

std::isnan()

std::isfinite()

std::isinf()

std::isnormal()

 Have a look at:

http://en.cppreference.com/w/cpp/head
er/cmath

© Heinz Nixdorf Institut / Fraunhofer IEM9

http://en.cppreference.com/w/cpp/header/cmath

Introduction to special numbers

 Other important values? (on my 64 bit machine)

#include <cstddef>

#include <limits>

#include <iostream>

using namespace std;

int main() {

std::cout << "min int: " << std::dec << std::numeric_limits<int>::min() << ’\n’;

std::cout << "max int: " << std::dec << std::numeric_limits<int>::max() << ’\n’;

std::cout << "min unsigned: " << std::dec << std::numeric_limits<unsigned>::min() << ’\n’;

std::cout << "max unsigned: " << std::dec << std::numeric_limits<unsigned>::max() << ’\n’;

std::cout << "double epsilon: " << std::dec << std::numeric_limits<double>::epsilon() << ’\n’;

// min int: -2147483648

// max int: 2147483647

// min unsigned: 0

// max unsigned: 4294967295

// double epsilon: 2.22045e-16

return 0; }

10

Method I: Using return codes

 Common way of reporting success or failure

 The C programming language makes heavy use of it

 Functions that provide a return value are documented with an error code table

 Handle an error according to its type

 Return codes are quite common in C++ too

 That was not always the case

 Return codes are recommended in google’s internal C++ coding guidelines

 Sometimes return codes are not intuitive (remember scalar_product())

 Maybe scalar_product() returns NAN because one of the vectors’ entries was NAN

 Idea: change the signature to

int scalar_product(const vector<double> &u,

const vector<double> &v, double& result);

 Not smart!

© Heinz Nixdorf Institut / Fraunhofer IEM11

Method I: Using return codes

 Using a smarter version: C++17 std::optional

#include <iostream>

#include <optional>

#include <vector>

std::optional<double> scalar_product(

const std::vector<int> &u,

const std::vector<int> &v){

if (u.size() != v.size()) {

return std::nullopt;

}

double result = 0;

for (int i = 0; i < u.size(); ++i) {

result += u[i] * v[i];

}

return result;

}

int main() {

std::vector<int> a = {1, 2, 3};

std::vector<int> b = {4, 5, 6};

std::optional<double> r =

scalar_product(a, b);

if (r.has_value()) {

std::cout << r.value() << '\n';

}

std::optional<double> s =

scalar_product(a, {42, 43});

std::cout << "has value: “

<< s.has_value();

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM
12

Method II: Using assertions

 Find bugs using assertions

 Check if a certain condition holds

 If not, a hard error is reported

 Dynamic assert

 Evaluated at runtime

 Can be switched on and off

 Using the symbol: NDEBUG

 Affects (runtime) performance

 How to use dynamic assertions?

a) Develop code using dynamic assertions

b) Remove them with when you ship your
product

#include <iostream>

// uncomment to disable assert()

// #define NDEBUG

#include <cassert>

int main() {

assert(2 + 2 == 5);

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM
13

assert’s implementation

#ifdef NDEBUG

#define assert(condition) ((void)0)

#else

#define assert(condition) /* implementation defined */

#endif

 How to print an error message, too?

int main() {

assert(2 + 2 == 5);

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM14

int main() {

assert((2 + 2 == 5) && "This is false!");

return 0;

}

Method II: Using assertions

 Static assert

 Evaluated at compile time

 Compiler aborts compilation if a static
assertion fails

static_assert (bool_constexpr ,

message)

static_assert (bool_constexpr)

 If bool_constexpr returns …

 true, this declaration has no effect

 false, a compile-time error is
reported and the message is
displayed

 Message has to be a string literal

 Does not affect (runtime) performance

#include <iostream>

int main() {

static_assert(2 + 2 == 5,

"This is just false!");

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM14

Dynamic assertions versus static assertions

 Think about the following

 Errors are bad

 But an early error is a good error

 At least better than a late error

 C/C++: everything that can be done at compile time should be done at compile time!

 Discover an error early saves

 Time

 Money

 Nerves

 People

© Heinz Nixdorf Institut / Fraunhofer IEM15

Contracts, functions and invariants

 Functions …

 Get some input

 Do some useful work and produce a result

 Return some output

 A function can be viewed as a contract

 Preconditions

 Conditions that hold for the input before processing

 Postconditions

 Conditions that hold for the output after processing

 (class / struct) invariants

 Conditions that hold before and after processing

 If conditions are violated, the application of a function rarely makes sense

© Heinz Nixdorf Institut / Fraunhofer IEM16

Enforcing contracts using assertions

 A function is a contract

 Contracts can be enforced

 Conditions are checked using assertions

 Some conditions are hard or even impossible to
express

 Use a comment in natural language then!

 Comment your functions!

class Car {

private:

bool engine_running;

public:

bool is_running() {

return engine_running;

}

void stop() {

assert(is_running());

stop_engine();

assert(!is_running());

}

void start() {

assert(!is_running());

start_engine();

assert(isrunning());

}

};

© Heinz Nixdorf Institut / Fraunhofer IEM17

Type traits

 Introduced in C++11

 “Type traits defines a compile-time template-based
interface to query or modify the properties of
types.” [http://en.cppreference.com]

 Use #include <type_traits>

 Often implemented using SFINAE (later on)

 Type properties and different categories

1. Primary type categories

2. Composite type categories

3. Type properties

4. Supported operations

5. Property queries

6. Type relationships

 Example

#include <iostream>

#include <type_traits>

struct A {};

class B {};

int main() {

std::cout << std::boolalpha;

std::cout << std::is_class<A>::value << '\n';

std::cout << std::is_class::value << '\n';

std::cout << std::is_class<int>::value << '\n';

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM18

Method III: Using exceptions

 “Exception handling provides a way of transferring control and information from some point in the execution
of a program to a handler associated with a point previously passed by the execution …”

 “… in other words, exception handling transfers control up the call stack.”

 An exception can be thrown by

 Throw-expression

 Dynamic cast

 Typeid

 New-expression

 Allocation function

 And any of the STL functions specified to throw exceptions to signal a certain error condition

[http://en.cppreference.com/w/cpp/language/exceptions]

© Heinz Nixdorf Institut / Fraunhofer IEM19

Method III: Using exceptions

 … so an exception can be thrown to indicate an error

 An exception can be caught to handle the error

 In order for an exception to be caught …

 The throw-expressions has to be contained within a try-block

 Or inside a function that is called in a try-block

 And the catch clause has to match the type of the exception

[http://en.cppreference.com/w/cpp/language/exceptions]

 In summary

 A certain type of an exception can be thrown to indicate an error

 An exception can be caught with a catch clause

 The control flow is transferred to an “earlier” point at which the error can be handled

 There are some places where you should not throw!

 This is necessary to guarantee resource safety

© Heinz Nixdorf Institut / Fraunhofer IEM20

Method III: Using exceptions

#include <iostream>

#include <stdexcept>

int main() {

std::vector<double> v = {11, 12, 13};

double& value = get(v, 0);

std::cout << value << ’\n’;

try {

double& other = get(v, 100);

std::cout << other << ’\n’;

} catch (std::out_of_range& e) {

std::cout << "error: " << e.what();

}

return 0;

}

double& get(std::vector<double>& v,

size_t idx) {

if (idx >= v.size()) {

// at this point we are in trouble

throw std::out_of_range("idx: "

+ to_string(idx) + "out of range!");

} else {

return v[idx];

}

}

 The out_of_range exception transfers the
control flow back to the callers catch block!

 The catch block is called exception handler!

© Heinz Nixdorf Institut / Fraunhofer IEM21
[Figure taken from images.google.de]

Method III: Using exceptions

 An exception is a class that contains all information necessary to perform the job

 #include <stdexcept> defines, among others, the following useful exception types

 std::logic_error

 std::invalid_argument

 std::domain_error

 std::length_error

 std::out_of_range

 std::runtime_error

 std::range_error

 std::overflow_error

 std::underflow_error

 You can write your own exception as well

 Inherit from an exception class and adjust it to your needs (maybe later on)

© Heinz Nixdorf Institut / Fraunhofer IEM22

Method III: Using exceptions

 Please don’t

#include <iostream>

#include <stdexcept>

int main() try {

std::cout << "I am trying\n";

throw std::runtime_error("error");

} catch (std::runtime_error &e) {

std::cout << “Something went wrong!\n";

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM23
[Figure taken from images.google.de]

What about our scalar product?

 What handling would be adequate?

 Return codes / assertions / exceptions?

#include <stdexcept>

#include <cmath>

double scalar_product(std::vector<double> &u,

std::vector<double> &v){

if (u.size() != v.size()){

throw std::logic_error("wrong imensions");

}

double result = 0;

for (size_t i = 0; i < u.size(); ++i){

result += u[i] * v[i];

}

return result;

}

// user generate some data

std::vector<double> a = {1 ,2, 3};

std::vector<double> b = {4, 5};

// user calls your function

double result;

try {

result = scalar_product(a, b);

} catch (std::logic_error& e) {

// perform adequate steps

// perhaps inform the user

std::cout << "scalar_product has

thrown!\n";

std::cout << e.what();

}
© Heinz Nixdorf Institut / Fraunhofer IEM25

Never catch like this

#include <stdexcept>

#include <cmath>

double scalar_product(std::vector<double> &u,

std::vector<double> &v){

if (u.size() != v.size()){

throw std::logic_error("wrong imensions");

}

double result = 0;

for (size_t i = 0; i < u.size(); ++i){

result += u[i] * v[i];

}

return result;

}

// user generate some data

std::vector<double> a = {1 ,2, 3};

std::vector<double> b = {4, 5};

// user calls your function

double result;

try {

result = scalar_product(a, b);

} catch (std::logic_error& e) {

// ah, just ignore

}

 These things can be seen in real-world code

© Heinz Nixdorf Institut / Fraunhofer IEM25

Re-throwing is possible as well

#include <stdexcept>

#include <cmath>

double scalar_product(std::vector<double> &u,

std::vector<double> &v){

if (u.size() != v.size()){

throw std::logic_error("wrong imensions");

}

double result = 0;

for (size_t i = 0; i < u.size(); ++i){

result += u[i] * v[i];

}

return result;

}

© Heinz Nixdorf Institut / Fraunhofer IEM26

// user generate some data

vector<double> a = {1 ,2, 3};

vector<double> b = {4, 5};

// more code

// user calls your function

double result;

try {

result = scalar_product(a, b);

} catch (std::logic_error& e) {

// the next try – catch – block

// should take care

throw;

// now we go even further upwards

// and look for another matching

// catch (std::logic_error e)

}

// more code

int main() {

try {

A a(2);

A b(4);

// more code …

throw std::runtime_error("crash");

} catch (std::runtime_error &e) {

std::cout << "gotcha\n";

}

return 0;

}

Stack unwinding

 There are books and papers on this topic

 See http://en.cppreference.com/w/cpp/language/throw

 The principle is not that complicated

#include <iostream>

#include <stdexcept>

struct A {

A(size_t size) : mem(new int[size]) {}

~A() { delete[] mem; }

int *mem;

};

 There are no leaks!

© Heinz Nixdorf Institut / Fraunhofer IEM27

http://en.cppreference.com/w/cpp/language/throw

Problems when unwinding the stack

 When exception handling fails and the stack cannot be unwound  terminate() is called

 terminate() is called whenever

 an exception is not caught

 an exception is thrown while exception handling

 … there are some more cases

 std::terminate() calls

 terminate_handler()

 The terminate handler usually leads to hard program termination

 But you can install your own terminate handler with set_terminate()

void myHandler() { std::cout << "My own termination handler!"; std::abort(); };

int main() {

// set terminate handler

std::set_terminate(&myHandler);

throw std::runtime_error("crash");

}

© Heinz Nixdorf Institut / Fraunhofer IEM28

Specifying functions as noexcept

 Functions can be specified to be guaranteed not to throw an exception

 For example small and simple functions that do not throw

int add(int a, int b) noexcept {

return a + b;

}

 This keyword is first about semantics

 You can immediately see that this function does not throw

 As useful as specifying a member function as const if it does not modify its data members

 May lead to a performance increase, compilers may generate faster code

 Please do not use it blindly  caution: transitivity

 If you lie to the compiler and you throw in a function marked as noexcept?

 std::terminate() will be called, which causes program termination

 Do not lie to the compiler

© Heinz Nixdorf Institut / Fraunhofer IEM29

Specifying functions as throw?

 Functions can be specified to indicate that they may throw

 Consider

double& give_me(std::vector<double> &v, size_t idx) throw(std::out_of_range) {

if (idx >= v.size()) {

throw out_of_range("idx out of range");

}

return v[idx];

}

 It is about semantics

 You know what it throws

 You know that you must have a corresponding exception handler

 But it is not good practice to use it  don’t do it

 Compiler cannot check if std::out_of_range is thrown or something else

 The annotation was a bad idea

© Heinz Nixdorf Institut / Fraunhofer IEM30

Why should I care about all the specifiers and qualifiers?

 Reading code is not always easy

 Using specifiers and qualifiers helps

 Good code should document itself

 Code should immediately tell you what it does

 Otherwise rewrite it

 Find useful names for variables, functions, structs, classes, unions, enums

© Heinz Nixdorf Institut / Fraunhofer IEM31

Why should I care about all the specifiers and qualifiers?

 You might have noticed:

 When you read a function declaration you should immediately …

 know what it does

 know how it has to be used

 know how it behaves

 but not necessarily how it does its job

 Otherwise rewrite your code

matrix matrix_multiply(const matrix &a, const matrix &b);

int add(int a, int b) noexcept;

class Vec3 {

private:

double x, y, z;

public:

constexpr Vec3(double a, double b, double c) noexcept;

constexpr double euclidean_length() const noexcept;

};

© Heinz Nixdorf Institut / Fraunhofer IEM32

Pros and cons exceptions [found on stack overflow]

 Pro

 Separate error-handling code from normal
program flow

 Throwing exceptions is the only clean way to
report an error in constructors

 Hard to ignore

 Easily propagated from deeply nested functions

 Carry much more information than an error
code

 Exception objects are matched to the handlers
using the type system

 Automatic stack unwinding

 Con

 Break code structure by creating invisible exit
points that make code hard to read

 Easily lead to resource leaks when used wrong

 Learning to write exception safe code is hard

 Expensive and break the paradigm: only pay for
what you use

 Hard to introduce to legacy code

 Easily abused for performing tasks that belong
to normal program flow

© Heinz Nixdorf Institut / Fraunhofer IEM34

When to use what?

 A rule of thumb (found on stack overflow)

 Use assertions to catch your own errors

 Use assertions for functions and data that are internal to your system

 Use exceptions to catch other peoples errors

 To check preconditions in public API’s

 API = application programming interface

 When dealing with external data that is not under your control

 Return codes are the poor man’s exceptions

© Heinz Nixdorf Institut / Fraunhofer IEM34

“You cannot throw in destructors and you should not throw in constructors!”

 You cannot throw in destructors

 Think of a dynamically allocated array of variables of user defined types

 delete[]

 What happens if an exception is thrown while destructing the 2th element?

 Abort?

  You leak!

 Ignore and continue destructing the remaining variables?

 C++ can only have one outstanding exception!

 If another exception is thrown you are doomed

  You leak!

 “Do you feel lucky […]?”

© Heinz Nixdorf Institut / Fraunhofer IEM36

“You cannot throw in destructors and you should not throw in constructors!”

 You should not throw in constructors

 What happens if an exception is thrown within the constructor?

 You fail half way

 The variable is not set up correctly

  Destructor cannot be called

 No stack unwinding can be performed

 You have to do it yourself

 Using a return code is not possible

 Constructors do not have a return value

© Heinz Nixdorf Institut / Fraunhofer IEM37

Pointers again

 Remember pointers

int i = 42;

int *i_ptr = &i; // i_ptr points to i

 So far we have only seen pointers to variables

 But more bizarre pointers are possible  functions have addresses, too

 Pointers to functions 

 How does that look like?

int (*f)(int, int) = nullptr;

 f is a variable of type function pointer to function of type int (int, int)

 In other words: f can point to every function that matches this signature

 Getting two integers as parameters

 Returning an integer

© Heinz Nixdorf Institut / Fraunhofer IEM37

Pointers to functions

#include <iostream>

int mult(int a, int b) {

return a * b;

}

int perform_binary_operation(int a,

int b,

int (*f)(int, int)) {

return f(a, b);

}

int main() {

int result =

perform_binary_operation(4,

5,

&mult);

std::cout << result << ’\n’;

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM39

Why is that useful?

 Now we can pass functions as parameters

 Remember our integrator program integrator.cpp

#include <iostream>

#include <cmath> // we use the 'abs()' function

long double integrate(const long double from, const long double to,

const size_t N, long double (*function) (long double)) {

long double integral_val = 0.0;

long double x = from;

const long double step_width = std::abs(from-to) / static_cast<long double>(N);

for (size_t n = 0; n < N; ++n) {

integral_val += function(x);

x += step_width;

}

return integral_val / N; }

© Heinz Nixdorf Institut / Fraunhofer IEM40

 We have abstracted away a concrete function

 A user of integrate() can just pass a function

pointer

 We can know integrate everything that matches

the signature

The std::function wrapper

 Fiddling with raw function pointers is not very handy

 Use a wrapper type

#include <functional>

int add(int a, int b) { return a + b; }

int perform_binary_operation(int a, int b, std::function<int(int, int)> f) {

return f(a, b);

}

int main() {

int result = perform_binary_operation(2, 6, add);

std::cout << result << ’\n’;

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM41

 When using function pointers you do not need the ‘&’

Recap

 Why error handling is important

 Return codes

 Assertions

 Exceptions

 Special floating point values

 Functions and templates to check types and their properties

 When to use what kind of error handling

 Function pointers

 std::function

© Heinz Nixdorf Institut / Fraunhofer IEM44

Thank you for your attention
Questions?

