
C++ Programming Sheet 11

C++ Programming

Exercise Sheet 11
Secure Software Engineering Group

Philipp Schubert
philipp.schubert@upb.de

July 09, 2021

Solutions to this sheet are due on 16.07.2021 at 16:00. Please hand-in a digital version of your answers
via PANDA at https://panda.uni-paderborn.de/course/view.php?id=22691.
Note: If you copy text or code elements from other sources, clearly mark those elements and state the
source. Copying solutions from other students is prohibited.

This exercise sheet will help you to familiarize yourself with the very basics of static program analysis.
You can achieve 16 points in total.

Exercise 1.
Draw the control-flow graphs for the following functions:

int foo(bool b) {
int x;
if (b) {

x = −1;
} else {

x = 0;
}
try {

x = getSensorValue();
} catch (runtime error(”bad!”)) {

std::cout << ”could not read sensor value\n”;
}
return x;
}

(3 P.)

int bar(int s, int e) {
int x = s;
for (int i = 1; i <= e; ++i) {

x += i;
}
return x;
}

(3 P.)

Page 1

https://panda.uni-paderborn.de/course/view.php?id=22691


C++ Programming Sheet 11

Important: In the following, you are free to choose whether you would like to work on exercise 2 or
exercise 3. You are also free to solve both exercises, of course. Solving both exercises might be espe-
cially interesting for those of you who would like to get a better idea of what we are doing in our Secure
Software Engineering research group at Paderborn University’s Heinz Nixdorf Institute.

Exercise 2.
Performing a sign analysis – that is an analysis that determines the sign of a variable, which can be posi-
tive, negative or zero. We define this analysis to use tuples 〈x,S〉 as data-flow facts, where x is the iden-
tifier of a variable and S∈L , a set drawn from the power set lattice over the domain D= {⊥,+,−,0,>}:

>

{+,−} {+,0} {−,0}

{+} {−} {0}

⊥

The special symbol⊥= {} denotes ”no information”, whereas the special symbol>= {+,−,0} denotes
the ”most imprecise element” in the lattice. The direction of this analysis is forward and the merge
operator is ∪ (set union). An example: say at some program node n you are left with the set nout =
{〈a,⊥〉,〈b,{+}〉,〈c,>〉,〈d,{+,−}〉}. That means that the four data-flow facts in nout hold at statement
n and state there is a variable ...

• a for which you have no information about its sign

• b which is positive at this very statement

• c for which you cannot tell anything of use because it can have any sign

• d which may be positive or negative

Observe the following code:

void foo(bool b) {
int a = 5;
int c = 2;
if (b) {

a = a − 7;
} else {

c = c + 3;
}

Page 2



C++ Programming Sheet 11

std::cout << ”a’s value is: ” << a << ’\n’;
std::cout << ”c’s value is: ” << c << ’\n’;
}

Draw foo’s control-flow graph. (3 P.)a)

Annotate each edge in the control-flow graph with the set of data-flow facts that holds after its re-
spective outgoing node. If two different control-flow edges lead to some common successor node,
their data-flow information must be merged before you can continue propagating the information.
In this analysis, the merge operator is set union, meaning we go upwards in L (and therefore gain
imprecision). Report on the analysis’s results at the very end of foo? (7 P.)

b)

Optional material(s): if you still cannot get enough of static program analysis, check out Prof. Bodden’s
Designing Code Analysis I (DECA I) course at
https://youtube.com/playlist?list=PLamk8lFsMyPXrUIQm5naAQ08aK2ctv6gE.

Exercise 3.
Observe the LLVM compiler’s intermediate representation (LLVM IR) of the following function that
performs some arithmetic computation.

define dso local i32 @ Z11my functionii(i32 %x, i32 %y) #4 {
entry:

%x.addr = alloca i32, align 4
%y.addr = alloca i32, align 4
%result = alloca i32, align 4
%i = alloca i32, align 4
store i32 %x, i32∗ %x.addr, align 4
store i32 %y, i32∗ %y.addr, align 4
%0 = load i32, i32∗ %x.addr, align 4
store i32 %0, i32∗ %result, align 4
store i32 1, i32∗ %i, align 4
br label %for.cond

for.cond: ; preds = %for.inc, %entry
%1 = load i32, i32∗ %i, align 4
%2 = load i32, i32∗ %y.addr, align 4
%cmp = icmp slt i32 %1, %2
br i1 %cmp, label %for.body, label %for.end

for.body: ; preds = %for.cond
%3 = load i32, i32∗ %x.addr, align 4
%4 = load i32, i32∗ %result, align 4
%mul = mul nsw i32 %4, %3
store i32 %mul, i32∗ %result, align 4
br label %for.inc

for.inc: ; preds = %for.body
%5 = load i32, i32∗ %i, align 4
%inc = add nsw i32 %5, 1
store i32 %inc, i32∗ %i, align 4
br label %for.cond

for.end: ; preds = %for.cond
%6 = load i32, i32∗ %result, align 4
ret i32 %6
}

Page 3

https://youtube.com/playlist?list=PLamk8lFsMyPXrUIQm5naAQ08aK2ctv6gE


C++ Programming Sheet 11

The LLVM language reference can be found at llvm.org/docs/LangRef.html. Here is a short sum-
mary of the most relevant parts:

• %X, is a local variables

• i32 denotes a 32-bit integer type

• The alloca instruction allocates a variable on the stack (creates a local variable)

• The store instruction stores a value to a memory location (variable)

• The br instruction branches to the specified label (or labels depending on the first parameter)

• The load instruction loads a value from a memory location (variable)

• The icmp slt instruction performs a signed less than integer comparison

• The ret instruction returns a variable from a function

What does this function compute and what would be a better function name? (7 P.)a)

Translate the program (in LLVM IR representation) into a semantically equivalent piece of C++
code! (3 P.)

b)

Optional material(s): if you still cannot get enough of LLVM, feel free to check out the talk ”Introduction
to LLVM” that has been given at LLVM Developer’s Meeting in 2019 by Eric Christopher and Johannes
Doerfert at https://www.youtube.com/watch?v=J5xExRGaIIY.

Page 4

llvm.org/docs/LangRef.html
https://www.youtube.com/watch?v=J5xExRGaIIY

