C++ Programming Sheet 9 / Bonus

C++ Programming

Exercise Sheet 8 / Bonus
Secure Software Engineering Group
Philipp Schubert

philipp.schubert@upb.de

June 18, 2021

Solutions to this sheet are due on 02.07.2021 at 16:00. Please hand-in a digital version of your answers
via PANDA at https://panda.uni-paderborn.de/course/view.php?id=22691l
Note: If you copy text or code elements from other sources, clearly mark those elements and state the
source. Copying solutions from other students is prohibited.

On this exercise sheet, you will deal with file IO and implement a small simulation. You are free to
implement your own useful data structure—a hash table—as a bonus exercise sheet. You can achieve 16
points + 16 bonus points for the optional exercise.

Exercise 1.
Programming a two dimensional cellular automaton — Game of Life. Cellular automatons are often
used to simulate real-world scenarios. For instance, one could say that weather forecast is only a three
dimensional cellular automaton with a bunch of simple rules. The Game of Life is a particular cellular
automaton consisting of a two dimensional grid. The grid, in turn, comprises fields. Each field, to which
we refer to as a cell, can be in one of two states: the state 1 (alive) or 0 (dead). The automaton is called
Game of Life because the state of a cell might change from one generation to another according to some
rules. The Game of Life allows arbitrary many generations that are computed iteratively.

The rules for computing the next generation, based on the current generation, are as follows (each
cell interacts with its eight neighbors, which are the cells that are horizontally, vertically or diagonally
adjacent):

1. A dead cell becomes alive if exactly 3 of its adjacent cells are alive.
2. A living cell dies if fewer than 2 or more than 3 of its adjacent cells are alive.
3. In any other case the state of a cell remains the same.

As all cells positioned at the boarders of the grid do not have § adjacent cells, you do not have to
consider them for the sake of simplicity. Keep that in mind when you iterate the cells of the current
generation in order to compute the next generation. You may use two nested std::vectors of boolean
variables to store the state of a grid as shown in the code snippet below.

/I this generates an 8 x 10 grid and initializes all cells to °0’
std::vector<std::vector<bool>> grid(8, std::vector<bool>(10, 0));

Page 1


https://panda.uni-paderborn.de/course/view.php?id=22691

C++ Programming Sheet 9 / Bonus

/I printing the grid
for (const auto &row : grid) {
for (const auto &cell : row) {
std::cout << cell <<’
}

std::cout << ’\n’;
}

/I individual cells can be accessed by using operator[]
std::cout << "grid at position [1][2] is: ” << grid[1][2] << *\n’;

You may wish to have a look at |https://en.wikipedia.org/wiki/Conway’s_Game_of_Life fora
more detailed description.

a) Implement a function std::vector<std::vector<bool>> read_grid(const std::string &filename); that
reads a a grid from a text file and parses it into a std::vector of std::vectors of bool values. (4 P.)

b) Next, implement another function

std::vector<std::vector<bool>>

game _of life(const std::vector<std::vector<bool>> &grid, const size_t N); that returns a grid ob-
tained by “waiting” (computing) N generations for the input grid. Hint: Use two temporary “grid”
variables. Compute the cells for the next generation grid by checking the rules for the current
generation and write new states to the next generation grid. When you have completed the com-
putation for the next generation, use std::vector’s member function swap() to swap the contents of
the two temporary variables and proceed until you have computed the N-th generation. (8 P.)

¢) You know what next, implement a function
void write_grid(const std::string &filename, const std::vector<std::vector<bool>> &grid); that writes
a grid to a text file. (3P.)

d) Test all of your functions by reading the grid from initial_grid.txt that looks a bit like a
snowman and compute the grid that is obtained by waiting (computing) the 10th generation. Write
the result back to a file. (1P.)

Exercise 2.

This is an optional exercise that is worth the equivalent of 16 points:

In this exercise, you will implement a simple hash table. Do not worry, we will split this task into little
subtasks. A hash table H is a data structure that stores values v; that are associated with keys k;. We
assume that the keys are unique. A value in H can be efficiently accessed by applying a hash function
h:S — N to a key (with S the set of all possible strings which is our key domain in this exercise). h(k)
tells us where the value that is associated with the key k € S is stored in memory. Since the application
of a hash function to a key is a computation that only requires a constant amount of time, H is a data
structure allowing to access arbitrary values in constant time, on average. Thus, a hash table is one of the
most used data structures in practice.

a) First, you have to provide some code that should make up your hash table H. It is probably a good
idea to make H a class, since H is a more sophisticated data type. Do so and create a class HTable.
(1P)

b) In this exercise, we want to restrict ourselves to only associate std::strings with variables of an
arbitrary type. For that reason, make HTable a class template that receives one template parameter
T.(1P)

Page 2


https://en.wikipedia.org/wiki/Conway's_Game_of_Life

C++ Programming Sheet 9 / Bonus

c)

d)

g

h)

)

In order to store the elements in HTable in an easily accessible manner, provide a data member
std::vector<std::pair<std::string, T>> data that allows us to store key-value pairs. Additionally,
provide a data member std::vector<bool> positions_in_use to keep track of the used positions in
your hash table. (1P.)

Provide a constructor HTable(size_t size); that initializes the member variables data and posi-
tions_in_use to hold size elements. (1 P.)

Now, you need to provide a function member / that receives a key (a std::string value in our case)
and returns a positive integer that shall be used as the index / position at which the key-value pair
associated with that key must be stored. Use the hash function shown in code listing
to do the job. The function turns a std::string into a natural number n € {0, ..,size — 1} which is
exactly what we need. (1 P.)

Next, implement a member function bool insert(const std::string &key, const T &value);. insert()
has to compute the index at which the key-value pair should be stored by using the previously
implemented function hash(). Insert the key-value pair at the position obtained by calling hash()
on insert’s parameter key and set the corresponding bit in positions_in_use to mark this position as
used. At last, let insert() return the boolean value false. (1 P.)

We have made a mistake. What if two (different) keys are accidentally mapped to the same index?
This is called a hash collision and the probability of such a collision grows with an increasing
number of entries stored in the hash table. A strategy to resolve this problem is required. We
resolve this problem by making H a hash table with so-called linear probing”. That is: we check
if the calculated position in data is not in use. If it is not in use, we insert the key-value pair at
this very position. If the computed position is already in use, we linearly probe if one of the next
positions in data is not in use and insert the data into the next “empty” position. Let the insert()
function return true when you have to use linear probing while inserting a key-value pair. As a
hash table gets filled with more and more data, you have to do more and more linear probing
because of hash collisions. The access behavior of a hash table slowly changes from constant time
to linear time in the worst case. If you have reached the end of data and still have not found an
empty position, continue to check for empty positions starting from the beginning. If there is no
empty position at all throw a std::runtime_error to notify users of your hash table that the table is
full. 3P)

Now, let us provide a function to get data out of our hash table. Implement T& get(const std::string
&key); to hash the key and retrieve the value associated with that key at position /(key). Again, due
to possible hash collision (recall how we have inserted data) it might be possible that the calculated
entry does not contain the corresponding value we are looking for. Therefore, you have to compare
key (the formal parameter of get() with the key stored at the calculated position. If both keys match
(use == for the comparison) we have found the correct entry and can return the corresponding
value. If the keys do not match, use linear probing and linearly check for the next entries and
return the value as soon as you find both keys matching. If you reach the end of the underlying
std::vector start at the beginning and throw a std::runtime_error if the key cannot be found in the
hash table. (4 P.)

Overload friend std::ostream operator< < (std::ostream &os, const HTable &h); to print all key-value
pairs. (1P)

Page 3



C++ Programming Sheet 9 / Bonus

j) Implement a function void erase(const std::string &key); that deletes the entry that corresponds to
the key key. You can delegate this erase to data’s member function erase. Do not forget to set the
bit in positions_in_use to zero to mark the place as free. (1 P.)

k) At last, implement a function void clear(); that deletes all entries in your hash table. The number
of elements that can be stored in data should remain the same. (1 P.)

size_t hash(const std::string &key) {
size_t hash_val = 5381; // have a nice prime number
for (const char c : key) {
hash_val = hash_val « 33 + c;
}
/I since ’hash_val’ is an unsigned type, we can just ignore overflows
/I (overflow is well—defined for unsigned types)
// because we need a value between 0 and size—1, we take the remainder of division by table’s size
return hash_val % data.size();

Listing 1: A hash function that turns out to be quite efficient.

Now relax, you have done a really good job so far.

Page 4



