
C++ Programming Sheet 2

C++ Programming

Exercise Sheet 2
Secure Software Engineering Group

Philipp Schubert
philipp.schubert@upb.de

April 30, 2021

Solutions to this sheet are due on 07.05.2021 at 16:00. Please hand-in a digital version of your answers
via PANDA at https://panda.uni-paderborn.de/course/view.php?id=22691.
Note: If you copy text or code elements from other sources, clearly mark those elements and state the
source. Copying solutions from other students is prohibited.

This exercise sheet allows you to familiarize yourself with functions. Furthermore, you will make
use of two important container types. And at last, you will have a quick look at pointers. You are free
to use the code snippets provided at https://www.hni.uni-paderborn.de/fileadmin/Fachgruppen/
Softwaretechnik/Lehre/CPP_Programming/SS2021/code_02.zip. You can achieve 16 points in total.

Exercise 1.
In this exercise, you will implement some basic linear algebra using C++. In particular, you will im-
plement a few functions that perform some useful operations on mathematical vectors. We will use
std::vector<double> to represent a mathematical vector v ∈ Rn. Write a program that implements a
function for each of the following tasks. Check your function implementations by calling them on small
test data as shown in the following code snippet:

#include <cmath>
#include <iostream>
#include <vector>

void print dvector(const std::vector<double> &v) {
for (const double &d : v) {

std::cout << d << ’ ’;
}
std::cout << ’\n’;
}

double euclidean length(const std::vector<double> &v);
double scalar product(const std::vector<double> &v, const std::vector<double> &w);
std::vector<double> normalize(std::vector<double> v);
double euclidean distance(const std::vector<double> &v, const std::vector<double> &w);

int main() {
std::vector<double> a = {1, 2, 3};
std::vector<double> b = {4, 5, 6};

Page 1

https://panda.uni-paderborn.de/course/view.php?id=22691
https://www.hni.uni-paderborn.de/fileadmin/Fachgruppen/Softwaretechnik/Lehre/CPP_Programming/SS2021/code_02.zip
https://www.hni.uni-paderborn.de/fileadmin/Fachgruppen/Softwaretechnik/Lehre/CPP_Programming/SS2021/code_02.zip

C++ Programming Sheet 2

// You have to provide the implementations for the four function declarations
// in the above to make this code work.
std::cout << ”length of ’a’: ” << euclidean length(a) << ’\n’;
std::cout << ”scalar product of ’a’ and ’b’: ” << scalar product(a, b) << ’\n’;
print dvector(normalize(a));
std::cout << ”distance between ’a’ and ’b’: ” << euclidean distance(a, b) << ’\n’;
return 0;
}

Implement a function called ...

euclidean length that computes the euclidean length of a vector. (1 P.)

The euclidean length of a vector v ∈ Rn is defined as ||v||=
√

∑
n
i=1 v2

i .

a)

scalar product that computes the scalar product of two vectors. (1 P.)
The scalar product < ·, ·> of two vectors x,y ∈ Rn is defined as < x,y >= ∑

n
i=1 xi · yi.

b)

normalize that computes a normalized version of a vector. (1 P.)
A normalized vector can be obtained by dividing each of its entries by its (euclidean) length.

c)

euclidean distance that computes the euclidean distance of two vectors. (1 P.)
The euclidean distance of two vectors x,y ∈ Rn is defined as ||x− y||2 =

√
∑

n
i=1(xi− yi)2

d)

Exercise 2.
Fibonacci numbers are numbers from an integer sequence, called Fibonacci sequence. Every number
in this sequence is the sum of the two preceding ones: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, ... The Fibonacci sequence Fn can be defined by the following recurrence relation (re-
cursion):

F1 = 1, F2 = 1, Fn = Fn−1 +Fn−2

Implement the function unsigned fibonacci rec(unsigned n) such that it computes the n-th Fi-
bonacci number using the recursive definition from above. (2 P.)

a)

Implement the function unsigned fibonacci nonrec(unsigned n) such that it computes the n-th Fi-
bonacci number but uses sequential code rather than recursion. (Hint: use three variables and a
loop.) (2 P.)

b)

Compute the 50-th Fibonacci number using both of your Fibonacci implementations. Are the
results of your implementations correct for large Fibonacci numbers? If not, state why that is. Is
there a noticeable difference in the runtime? Why does the recursive version takes so much longer
to compute? (Note: it is not the negligible overhead caused by a function call.) (2 P.)

c)

Exercise 3.
Declare a variable mymap of type std::map<std::string, int> which is declared in the standard template
library. (Use #include <map>.) Please refer to http://en.cppreference.com/w/cpp/container/map

on how to use std::map; you can find detailed descriptions as well as example code. Have a look at the
member functions (constructor), operator[] and the corresponding code examples.

Page 2

http://en.cppreference.com/w/cpp/container/map

C++ Programming Sheet 2

Add the following tuples to mymap that map a person’s name to their age: ("Peter", 40),
("Brian", 4), ("Stewie", 1), ("Chris", 15), ("Meg", 14). (1 P.)

a)

Write a function that prints the contents of mymap to the command line. (2 P.)b)

Add the tuple ("Lois", 41) to mymap and print the contents of the map again. (1 P.)c)

Exercise 4.
We have already learned that pointer and reference types can be quite useful. We also discussed that one
can represent points-to relationships as a graph. Consider the following (not very useful) code snippet:

int i, j, k;
int ∗a = &i;
int ∗b = &k;
int ∗∗p = &a;
int ∗∗q = &b;
int ∗c = ∗q;

Feel free to watch the following video that provides an excellent introduction to pointers: https:
//youtu.be/Rxvv9krECNw?t=4m18s. (0 P.)

a)

Draw the corresponding directed graph that captures the points-to relations of the above code
snippet. Use nodes to represent variables and directed edges to represent points-to information.
Annotate each node with its respective variable’s name and type. (2 P.)

b)

Page 3

https://youtu.be/Rxvv9krECNw?t=4m18s
https://youtu.be/Rxvv9krECNw?t=4m18s

