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“Machine learning is the

science and art of algorithms
that make sense of data.”

Peter Flach, 2012

“Machine learning is the science of

getting computers to act without being
explicitly programmed.”

Andrew Ng, 2013
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algorithm

WHILE W /= V
MinDist := INFINITE

FOR each v in V - W
IF ShortDist[Vv]

W 1=V
END {if}
END {for}
W := W U {w}

FOR each u in V - W

ShortDist[u] :=
END {while}

ALGORITHM shortest-path (V,T)

W := {vl}

ShortDist[v1l] :=0

FOR ecach u in V - {vl}
ShortDist[u] := T[vl,u]

< MinDist
MinDist = ShortDist[v]

Min (ShorDis[u], ShortDist [w]

+ T[w,ul)
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algorithm

domain expert = programmer

Requires a comprehensive understanding and adequate formalization,
not only of the problem, but also of the solution process.
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state vector
describing the €T
environment

action vector

19 September 2013

The End of Driving?

A chorus of carmakers has declared that they expect autonomous cars to reach
commercial viability by 2020. Computer systems and sensors that handle
parking, braking, and to a limited degree, steering are already giving us a
glimpse of a future in which machines not only drive unassisted but do so better
than any human can. Now Tesla Motors, maker of the eponymous electric
luxury sports car that debuted to rave reviews, has upped the ante. Tesla's
CEO, Elon Musk, says that within the next three years, his company aims to
produce systems capable of safely taking the helm for 90 percent of miles
driven.

IMAGE RECOGNITION AUTONOMOUS CARS

MALE
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“Our problem then is to find out how to programme these
machines to [behave intelligently]. At my present rate of working
| produce about a thousand digits of programme a day, so that

about sixty workers, working steadily through the fifty years
might accomplish the job, if nothing went into the waste-paper
basket. Some more expeditious method seems desirable.”

Alan Turing, Computing Machinery and Intelligence, 1950

Goal of automated programming ever since (e.g. Turing Award Lecture
by Jim Gray, 1999)
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Human skills are not always easy to explain!

Optimal Sample Complexity of M-wise Data for Top-K Ranking

Algorithm 1 Rank Centrality (Negahban et al., 2012)
Input the collection of statistics s = {sz : T & £*)}.
Convert the M-wise sample for each hyper-edge T into
M pairwise samples:

1. Choose a circular permutation of the items in Z uni-
formly at random,

2. Break it into the M pairs of adjacent items, and de-
note the set of pairs by ¢(Z),

3. Use the (pairwise) data of the pairs in ¢(Z).

Compute the transition matrix P = [Pyj]1<i jent

N s i
Py=0 1=y Py ifi=3;
0 otherwise,

Where dp is the maximum out-degree of vertices in £.
Output the stationary distribution of matrix P.

L
wi= Y %Zy“,"r 6)
T(iles(D) =1
In an ideal scenario where we obtain an infinite number of
samples per M-wise comparison, ie., L — oo, sufficient
statisties £ 31, u{f)y converge to ., as the PLmodel
is a natural generalized version of the BTL model. Then,
the constructed matrix P defined in Algorithm 1 becomes
amatrix P whose entries [P,y <, ;<, are defined as

u M,
g Srtiajesn wi; orL e £
Py=9q 1= iy Pusi ifi=j;
0 otherwise.

an

The entries for observed item pairs represent the relative
likelihood of item i being preferred over item j. Intuitively,
random walks of P in the long run visit some states more
often, if they have been preferred over other frequently-
visited states and/or preferred over many other states.

‘The random walks are reversible as w; Pj; = w; P; holds,
and irreducible under the connectivity assumption. Once
we obtain the unique stationary distribution, it is equal to
w = {wy,...,w,} up to some constant scaling.

lear that random walks of P, a noisy version of
give us an approximation of w. The algorithm

et al., 2013) directly follows the ordering evaluated in each sam-
ple;ifitis 1 <2 < -~ < M — 1 < M, it s broken into pairs
of adjacent items: 1 < 2 up to M < M. Our method turns
out to be consistent, ie., p2=l = 2 (see (17)), whereas the

adjacent breaking method is ot (Azari Soufiani et al., 2013).

adopts a power method, known to be computationally effi-
cient in obtaining the leading eigenvalue of a sparse matrix
(Meirovitch, 1997), to obtain the stationary distribution.
3.2. Proof outline

To outline the proof of Theorem 2, let us introduce Theo-
rem 3. We show that Theorem 3 leads to Theorem 2.

Theorem 3. When Rank Centrality is employed, with
high probability, the £, norm estimation error is upper-

bounded by
o~ wl,, . [nlogn [T
Sy =, 18)
vl GpreLV M

where p > ey(M 1), | ity and cy is some mumerical

constant.

Let |[wloc = wmax = 1 for ease of demonstration. Sup-
) ogn
pose Ag = wi — w41 2 ﬁﬁp_:. 37 Then,
i =y 2 wi = wy = [y — wi| = iy — wy|
Zwi —wk =2 —wlw >0, (19)

forall1 < i < K andj > K + 1. Thatis, the top-K
items are identified as desired. Hence, as long as Ak 2

r'—g‘ﬁ,/fp ie. (f)pL 2 "Ry, relisble top-K

ranking is achicved with the sample size of "% .
Now, let us prove Theorem 3. To find an £.., error bound,
we first derive an upper bound on the point-wise error be-
tween the score estimate of item i and its true score, which
consists of three terms:

b — wi] < s —wi| P+ 3 iy — wy Py
Ja#
+

3 i) (Ba=Py)|. @)

i

This can be obtained applying @ = Pib and w = Pw.
‘We obtain upper bounds on these three terms as follows.

Pi<y, @n

L (p nlogn [T
J%(w.wj)(i’,‘ =P[5y Vi @
0 B nlogn [1
65— w| By £ [T 37
,%;.‘ o=l B S GV

with high probability (see Lemmas 1, 2 and 3 in the supple-
mentary for details). One can see that the inequalities (21)

23)

Abstract

Given a sample of instances with binary labels,
the top ranking problem is to produce a ranked
list of instances where the /ead of the list is domi-
nated by positives. Popular existing approaches to
this problem are based on surrogates to a perfor-
mance measure known as the fraction of positives
of the top (PTop). In this paper, we show that
the measure and its surrogates have an undesir-
able property: for certain noisy distributions, it is
optimal to trivially predict the same score for all
instances. We propose a simple rectification of
the measure which avoids such trivial solutions,
while still focussing on the head of the ranked list
and being as easy to optimise.
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Abstract

Given a sample of instances with binary labels,
the top ranking problem is to produce a ranked
list of instances where the head of the list is domi-
nated by positives. Popular existing approaches to
this problem are based on surrogates to a perfor-
mance measure known as the fraction of positives
of the top (PTop). In this paper, we show that
the measure and its surrogates have an undesir-
able property: for certain noisy distributions, it is
optimal to trivially predict the same score for all
instances. We propose a simple rectification of
the measure which avoids such trivial solutions,
while still focussing on the head of the ranked list
and being as easy to optimise.

Optimal Sample Complexity of M-wise Data for Top-K Ranking

Algorithm 1 Rank Centrality (Negahban et al., 2012)
Input the collection of statistics s = {s7 : T € M)}
Convert the M-wise sample for each hyper-edge Z into
M pairwise samples:

1. Choose a circular permutation of the items in Z uni-
formly at random,

2. Break it into the M pairs of adjacent items, and de-
note the set of pairs by ¢(Z).

3. Use the (pairwise) data of the pairs in ¢(Z).

Compute the transition matrix P = [P;]1<: j<n:

R Vi ifi#
b= 1*)::,*;; By i
otherwise,

where dp is the maximum out-degree of vertices in £.
Output the stationary distribution of matrix P.

L
wi= ) T a6)
T(islesm =
In an ideal scenario where we obtain an infinite number of
mmples e M.wim comparise, Le. 1 — 0o, mificien
statistics L 317, 4y converge to ity as the PLmodel
is a natural generalized version of the BTL model. Then,
the constructed matrix P defined in Algorithm 1 becomes
amatrix P whose entries [Py < j<n are defined as

),
T STti)esm way oL eEM;
py={ 180 R ifi=j;
0 otherwise.

an

The entries for observed item pairs represent the relative
likelihood of item i being preferred over item j. Intuitively,
random walks of P in the long run visit some states more
often, if they have been preferred over other frequently-
visited states and/or preferred over many other states.

The random walks are reversible as w; Pj; = w; P,; holds,
and irreducible under the connectivity assumption. Once
we obtain the unique stationary distribution, it is equal to
w = {wy,...,w,} up to some constant scaling.

It is clear that random walks of P, a noisy version of
P, will give us an approximation of w. The algorithm
etal, 2013) dilmuy follows the ordering evaluated in each sam-
pleifitis 1 <2 < --- <M — 1 < M, itis broken into pairs
of adjacent items: 1 < 2!!)1!01"*1 ~ M. Our method turns
out (o be consistent,i.e., ps<L=g] = £ (see (17)), whereas the
adjacent breaking method is |s ot ( (Ann Soufiani et al., 2013).

adopts a power method, known to be computationally effi-
cient in obtaining the leading eigenvalue of a sparse matrix
(Meirovitch, 1997), to obtain the stationary distribution.

3.2, Proof outline
To outline the proof of Theorem 2, let us introduce Theo-
rem 3. We show that Theorem 3 leads to Theorem 2.
Theorem 3. When Rank Centrality is employed, with
high probability, the £ norm estimation error is upper-
bounded by

lldo — wll. nlogn

lwllee

(18)

where p = c1(M — 1) . and cy is some numerical

constant.

Let [[wlos = wmax = 1 for ease of demonstration. Sup-
N [ogn_ /1
pose Ax = wk — Wk41 2 WreV W Then,

Wy =y 2 wi = wy — b —wi] = iy —wyl
> wk —wk+1 =2 —wllee >0,  (19)

forall 1 <i<Kandj>K+1. 'l‘halis,LhelopK
items are identified as desired. Hence, as long as Ak >

ez ‘:!:L\/T Lie. (f)pL 2 ZRE" . reliable top-K

ranking is achieved with the sample size of "“‘K" BhEm L,

Now, let us prove Theorem 3. To find an £, error bound,
we first derive an upper bound on the point-wise error be-
tween the score estimate of item i and its true score, which
consists of three terms:

[ = wil < [ibs — wil P+ Y [iby — wy| By

Jif

3 (i) (B = Py

i

+ . o)

This can be obtained applying @ = Pi and w = Pw.
We obtain upper bounds on these three terms as follows.

Pi<, @n
nlogn [T
S\ GwzVar @

nlogn
Pig b3 (23
’%\wj wil P S\ mE )

with high probability (see Lemmas 1,2 and 3 in the supple-
mentary for details). One can see that the inequalities (21)

3 (it wy) (P = )

i




IMPLICIT SKILLS

INTELLIGENT

SYSTEMS

Human skills are not always easy to explain!

For example, a reduction
of the search space does
not immediately imply
better solutions.

Eine Beschrankung des
Suchraums fihrt beispielsweise
nicht unmittelbar zu besseren
Losungen.

10
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LEARNING FROM DATA i

Instead of providing a complete and consistent description of domain
knowledge, or designing a model by hand, it is easier to ...

— give examples and let — let the system explore — demonstrate and let the
the system generalize and provide feedback system imitate

MALE

—> supervised learning —> reinforcement learning —> imitation learning

12
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— correctness
— complexity (time, space)

computer scientist

— correctness (?)
— complexity (time, space)
data scientist — sample complexity

14
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Probably Approximately Correct (PAC) learning:
Efficiently finding a hypothesis that is ,good” with high probability!

e-close to the target
with probability > 1 — ¢

HYPOTHESIS SPACE ‘H

ACM Turing Award 2010 for Leslie G. Valiant .
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Machine learning is an option whenever explicitly designing an algorithm
by hand appears intricate, while data is available that provides, in one way
or the other, useful hints at what the sought functionality may look like.

y €{0,1}

For example, a reduction
of the search space does
not immediately imply
better solutions.

r c RY
([ ]

bk

neural networks
kernel machines
decision trees

16
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Goodl

data | dil ilabl make use of
ata Is readily availapble or existing data e j
can easily be produced fl rL '
- ICKI
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(0% .
O unsupervised
simulation, 0"0/ learning
training through ©
trial and error
amazon mechanical turk™
e Artificial Artificial Intelligence
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e | e e O male
i o female
P | e [t
:6: AlphaGo
reinforcement learning supervised learning
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banking and finance (stock prediction,
fraud detection, ...)

busmess (CRM response smart environments
prediction, ...)

Internet (information retrieval, email e
classification, personalization, ...) technical systems (diagnosis,
control, monitoring, ...)
Google == e= &=

The End of Driving?

orus of carmakers has declared that the, yexpecl t 0 reach
Vi

glimpse of a future in which machines not onl
than any human can. Now Tesla Motors ker of the eponyr
luxury sports car that debuted to ray , has upped the ante.

CEO, Elon Musk, says that within e next three years, his company aims to
produce systems capable of safely taking the heim for 90 percent of miles
driven.

biometrics (person
identification, ...)

autonmous driving

medicine (diagnosis,
prosthetics, ...)

|
.J
g
oo R

i
Pt

'u‘ AlphaGo

bioinformatics,

media (speech/image genomic data anaIyS|s

recognition, video mining, ...)

games (e.g. soccer, go, ...)

18



ANALYTIC VERSUS SYNTHETIC ML i
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ANALYTIC VIEW

Polizei-Software zur Vorhersage von Verbrechen
Gesucht: Einbrecher der Zukunft

—.mazon ﬁl patent fo
“anticipatory” shipping
i P

—> analyze and help understand
a phenomenon that exists in
the real world

SYSTEMS

SYNTHETIC VIEW

ﬂim' "Mdff e %
;t",.:ii-‘ e
é X :

\ i
S

—> support the design/engineering
of a system with certain
desirable properties

19



ALGORITHMS AND ECORITHMS

INTELLIGENT

SYSTEMS

# Spot Check Algorithms

. . i . models = []

cggctlon GetMin(var a: TList) models. append(C'LR', Logis
models.append(('LDA', Line

iy MW, M3 dEEgry models.append(('KNN', KNei

begin. R models.append(('CART', Dec]
m;:i'T- gf nt; models.append(('NB', Gauss

models.append(('SWM', SVC(
# evaluate each model in t
results = []

names = []

for name, model in models:

for i := 1 to a.len do
if a.arr[i].G < min t
begin
min := a.arr[i].G
mini := i;
end;

kfold = model_selectio|
cv_results = model_sel
results.append(cv_resu
names . append(name)

msg = "%s: ¥%f (¥f)" %
print(msg)

GetMin := mini;
end;

classical ‘implicit”
programming programming

algorithm ecorithm

PROBABLY Leslie Valiant's broad term for an
APPROXIMATELY algorithm occurring in nature. An
CORRECT ecorithm is an algorithm "living" in
g o and interacting with an external
153569083 environment. Its goal is to perform
LESLIE VALIANT well in that environment. Parallel to
evolution of ecosystems.

20
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KNOWLEDGE

BASE

& Representation of problem-specific
s 3, knowledge, such as facts and rules
\ about a domain. ,What“ but not ,how"!
EXPERT | ‘& o

Generic control structure implemented by the inference engine.

programs = theories of a formal logic, computations = deductions

Closely connected to declarative programming languages such as PROLOG.
Appealing if it's difficult to explain HOW the problem is solved.

21
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KNOWLEDGE
BASE

KNOWLEDGE

DATA

22
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The world is regular ...

23
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data generalization

The world is regular ...
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data generalization

The world is regular ...
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The world is more or less reqular ...

26



NOISY DATA

INTELLIGENT

SYSTEMS

The world is regular but noisy ...

27



NOISY DATA
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Noise? Part of a pattern?

28
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simple world, noisy data complex world, noise-free data

29
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OUTPUT

INPUT
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OUTPUT

INTELLIGENT

= SYSTEMS
Assume the world to be simple ...
O
a a
a
O
O
>

INPUT
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Assume the world to be complex ...

INPUT

32
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overfitting and
underfitting leads to
poor generalization §

OUTPUT

INPUT

33
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expected loss

SYSTEMS

learning curve for a flexible model class
(such as deep neural networks)

learning curve for a simple model class

sample size

34
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induction  learning ... used for

principle  algorithm = prediction, classifiction

|

prior knowledge ——> MODEL

. NDUCTION gl model
data/observations ——>

= adaptation, control
= systems analysis

= [earning essentially means revising prior knowledge in the light of observed data!
=  Most explicit in frameworks such as Bayesian inference, ILP, ...
=  Without prior knowledge, data is meaningless ...
= Data can compensate for a lack of knowledge, and vice versa.
35



INTELLIGENT
SYSTEMS

MILESTONES OF Al i

Essentially based on machine learning  |[YSEN—_—_.
technology, makes use of deep neural networks
and combines different types of learning

(supervised, reinforcement, MCTS) ':!' A I p h d G O

AlphaGo beats Lee Sedol (2016)

Massive information retrieval (four
terabytes of structured and
unstructured content), yet little
reasoning and learning.

Brute force computing power (massively parallel system,
evaluation of 200 million positions per second),
systematic search, structured domain.

Deep Blue beats Garry Kasparov (1997)
36
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N e santne ™ N TR DA
structured data - — " non-standard

D
and predictions performance metrics

X1~ Tg ™ T3 = T4

weak dynamic
supervision environments
(z1,{A, BY) AL i
(22, [1,3])
T -y uncertainty in

machine learning
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learning to multilabel
/earning to search classification
aggregate structureddata _________ non-standard
and predlctlons performance metrics
preference binary (online)
learning and decomposition F-measure
ranking techniques maximization
qualitative
weak remforcgment dynamic
. learning .
supervision environments

fuzzy logic in
superset machine learning online learning,
I ' learning on streams
earning _ _
uncertainty in

machine learning

aleatoric vs.
epistemic uncertainty
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The data scientist is not supposed to solve the actual problem
(provide an algorithm) but the problem to learn how to solve that
problem (provide an ecorithm).

That’s not necessarily an easy task either ...

39
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Objective of the learning problem
— specify the prediction task
— success criteria (accuracy/loss function, model corg

— feature description
— kernel functions

All learning algorithms have (hyper-)parameters, which have a critical
influence on the generalization performance. Tuning these parameters is
often tedious and difficult.

40



AUTOMATED MACHINE LEARNING

EMAIL

Von Heike Wehrheim i * 4 Antworten | E®L |~ | = weiterleiten &3 Archivieren € Junk | ( Léschen  Mehr~
Betret [sfb01-tpb2] Nichstes QT-Treffen 151122016, 16:15
An fists.upb.det, b
Liebes QT!

Im neuen Jahr sollten wir uns in unserem QT mal wieder treffen. Als Thema fiir das Treffen sehe ich
- Kooperationen im QT und

- Quo vadis "ML als Case Study"

Weitere Themenvorschlage nehme ich gerne entgegen.

Hier ein Doodle zur Terminfindung http://doodle.com/poll/pukakwq8eyzmadzg

Viele GriiRe und schéne Weihnachten
Heike

57B901-tpb2 nailing List
57b901-tpb26lists. uni-paderborn.de
https://1ists. uni-paderborn. de/mai lnan/Listinfo/sh901-tpb2

SPAM or
Not SPAM

INTELLIGENT

SYSTEMS
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Many ML algorithms operate in Euclidean spaces ...

EMAIL

Helke Wehrheim <wehrheim@upb.des# | 4 Antworten | Liste antworten |~ | | = Weiterlaiten || £ Archivieren || @ Junk | Loschen | Mehr~
[sfb901-tpb2] Néichstes QT-Treffen 15[12/2016, 16:1€
1. .
Liebes QT!

Im neuen Jahr sollten wir uns in unserem QT mal wieder treffen. Als Thema fir das Treffen sehe ich
- Kooperationen im QT und
- Quo vadis "ML als Case Study”

Weitere Themenvorschlage nehme ich gerne entgegen.

Hier ein Doodle zur T http://doodle.com/pol

Viele GriRe und schone Weihnachten
Heike

5Tb901-tpb2 mailing List
5fb901-tpb2@lists. uni-paderborn, de
https://lists.uni-paderborn, de/nailnan/listinfo/sfb901-tpb2

r—=\r1,r2,...,4(d
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THE HUFFINGTON POST

INFORM e INSPIRE ¢ ENTERTAIN ¢« EMPOWER

POLITICS ENTERTAINMENT WELLNESS WHAT’S WORKING VOICES VIDEO ALL SE(

THE BLOG

Machine Learning as a Service: How Data Science Is
Hitting the Masses

© 03/29/2016 02:43 pm ET | Updated Mar 29, 2016

(vl e in = m . Automati i
Contest 2nd Place: Automating Data Science HPE Haven

4 Previous post Next post I OnDemand

Q Laura Dambrosioo B e 14

Writer, entrepreneur, tech enthusiast

Tags: Algorithms, Automated, Automated Data Science, Feature Selection,
Machine Learning

Analyze and extract from rich media

Detect faces or fraud
This post discusses some considerations, options, and opportunities for Build data rich apps
automating aspects of data science and machine learning. It is the second
place recipient (tied) in the recent KDnuggets blog contest. #MachineLearningApplied
=) comments . .
Ankit Sharma, DataRPM. Machine Learning APIs to augment human

intelligence

Editor's note: This blog post was an entrant in the recent KDnuggets
Automated Data Science and Machine Learning blog contest, where it

tied for second place.
" g
Data scientist is the sexiest job of 21st century. But even Data Scientists have = === ‘ datascope
to get our hands dirty to get thinas done. What if some of the manual

46
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function GetMin(var a: TList)
var
i, min, mini: integer;

begin
min := MaxInt;
mini := 0;

for i := 1 to a.len do
if a.arr[i].G < min t

mann(adam) .
mann(tobias).
mann(frank).
frau(eva).
frau(daniela).
frau(ulrike).

# Spot Check Algorithms
models = []
models.append(('LR", Logis
models.append(('LDA', Line
models.append(('KNN', KNei
models.append(('CART', Dec
models.append(('NB', Gauss
models.append(('SWM', SVC(
# evaluate each model in t

SYSTEMS

Microsoft Azure

& -
[ g

. results = []

begin vater (adam,tobias). names = []
min := a:arr[i] .G vater (tobias, frank). for name, model in models:
mini := i; vater (tobias,ulrike). kfold = model_selectio|
end; £t £obi cv_results = model_sel
T er(evaf obias). results.append(cv_resu

GetMin := mini; mutter(daniela, frank). names . append(name)

end; mutter(daniela,ulrike). msg = "¥s: %f (¥f)" %

print(msg)

automated
machine learning

classical
programming

knowledge-based
programming

‘implicit”
programming
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r Bayesian optimization <—‘
{Xtraz'na thraz'ny
data pre- feature classifier i Yt ,
Xiests b, L} processor preprocessor €S

AutoML framework

Existing approaches optimize parameters of a fixed ML pipeline.
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AUTO-ML VIA HIERARCHICAL PLANNING i

Combining ML and planning (hierarchical task networks):

(preprocess ) | (preprocessData )
(classify ) I (classify )
(preprocessData ) (PcA )
(preprocessData ) (classifyWithND )
(preprocessFeatures) 0
CET TR (pod )
— , 5 T (buildND )
(rescaling ) (trainND )
(imputation ) (predictFromND )
(fastICA ) — 5 —
(G WEADT ) (PCA )
= : l." - ) > (configureNDSplit )
rescaling ,
NDSplit
(imputation J (conﬁgurt’j“ = )
(fastICA ) (configureNDSplit )
(trainDT ) (trainND )
| (predictFromDT ) (predictFromND )

[ (classify

)

INTELLIGENT

(classify WithNN

f (buildNN

(trainNN

(predictFromNN

|

( (addLayer

(buildNN

(trainNN

(predictFromNN

DA DA DA G

—

(addLayer

addLayer
( y

(addLayer

(trainNN

(predictFromNN

I N

SYSTEMS
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AUTO-ML VIA HIERARCHICAL PLANNING i

nested dichotomy

q
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N
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Dataset RTN RPND ND RTN RPND ND

audiology 7692+ 3.65 | 73.39+5.28 ¢ 68.76+ 6.15 e || 74.46+ 3.91 74.81+ 4.10 70.97+ 5.08 @
kropt 3325+ 0.96 | 32.55+0.87 e 27.96+ 1.36 e || 48.98+ 1.50 | 49.19+ 1.33 4491+ 185 e
letter 7150+ 1.69 | 66.82+2.55e 51.51+3.38e || 80.12£0.74 | 79.83£0.74e 7895+ 1.04
mfeat-factors 04.59+ 1.36 | 94.12+ 1.54 9214+ 1.52 e || 87.61+ 1.50 | 87.24+ 1.61 8631t 1.71 e
mfeat-fourier 75.79+£229 | 7471 191e 7177230 e || 72.87+1.80 | 72.83£ 1.94 71.43+£1.99 o
mfeat-karhunen || 89.09+ 1.84 | 88.66£ 1.70 8491250 e || 80.72+ 1.98 | 80.25£ 2.05 78.87£2.09 @
optdigits 93.40+0.77 | 92.03+ 1.64 ¢ 89.93+2.38 e || 90.49+ 090 | 89.67t1.22e 8875+ 1.18 e
page-blocks 96.49+ 0.38 | 96.30+£ 0.43 e 9571+ 0.66 @ || 96.96+ 0.36 | 96.96+ 0.39 96.93+ 0.36
pendigits 03.78+0.82 | 90.35+2.26 e 87.19+3.53 e || 9537049 | 9499+ 0.52e 094.77+0.52 e
segment 95.17+£0.78 | 93.91 1.96 ¢ 90.20+=4.04 e || 9571090 | 95.60+ 0.79 949414097 o
shuttle 98.96+ 5.83 | 98.99+ 5.74 98.98+ 5.77 100.004 0.00 | 100.00£ 0.00  100.00=+ 0.00
vowel 8291+ 221 | 79.96+3.64 e 52.124+8.83 e || 72.97£3.45 | 72.49+3.52 71.09+ 348 o
yeast 58.48+ 1.92 | 58.27+ 1.97 5641+ 1.89e || 57.14£2.22 | 57.25£ 1.82 56.29+ 235 e
Z00 03.88+=4.27 | 93.62+ 4.91 90.98+ 5.69 @ || 93.664+4.88 | 92.931+4.90 91.16:4.63 o

Table 2. Experimental results (mean accuracy + standard deviation) using logistic regression (left) and C4.5 (right)
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ML as search, Auto-ML as
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learning to multilabel
learning o S€arch classification
aggregate structureddata __________ non-standard
and predlctlons performance metrics
preference binary (online)
learning and decomposition F-measure
ranking techniques maximization
qualitative
weak re/nforcgment dynamic
. learning .
supervision environments

fuzzy logic in
superset machine learning online learning,
| p learning on streams
earning . .
uncertainty in

machine learning

aleatoric vs.
epistemic uncertainty ... applications
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Predicting Rankings of Software
Verification Competitions*

Mike Czech, Eyke Hiillermeier, and Heike Wehrheim

Department of Computer Science
Paderborn University
Germany

Abstract. Software verification competitions, such as the annu
COMP, evaluate software verification tools with respect to their ef
ity and efficiency. Typically, the outcome of a competition is a (p
category-specific) ranking of the tools. For many applications, s

Int_Literal_Small

Int_Literal_Small

Weisfeiler-Lehman subtree kernels on
a graph representation for software
source code that mixes elements of

control flow and program dependence

;
graphs with abstract syntax trees. @@ o Do
@ @ Syntactic Dependence

|

— > Control-Flow
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COOPERATION @ UPB (Schafer/Platenius) i

Imprecise Matching of Requirements Specifications
for Software Services using Fuzzy Logic

Marie C. Platenius, Wilhelm Schifer =~Ammar Shaker, Eyke Hiillermeier Matthias Becker
Software Engineering Intelligent Systems Software Engineering
Heinz Nixdorf Institute Department of Computer Science Fraunhofer IEM
Paderborn University, Germany Paderborn University, Germany Paderborn, Germany
{m.platenius,wilhelm} @upb.de {ammar.shaker,eyke } @upb.de matthias.becker @iem.fraunhofer.de

v 3

1. Translation . . # .
‘ into Fuzzy Sets ]_ : 2. Matching - /C= 3. Aggregation ’
7

4 _5 Re
In utS: 1.2 3 4 5 Rep n f 8 5 \J/
Reaspec: tity Context |#Ratings p=0. Output: [0,0.5]
: ice)xc 4 geProl |RT 80 7‘
3: Repgr{Service) x4 Uncertain due to
. provider-induced fuzziness

Fig. 2. Fuzzy Reputation Matching Procedure
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Pairwise versus Pointwise Ranking: A Case Study

VITALIK MELNIKOV!, PRITHA GUPTA!, BERND FRICK?,
DANIEL KAIMANN?, EYKE HULLERMEIER!
!Department of Computer Science

e S ® 2Faculty of Business Administration and Economics
t rI p a VI S O r ‘ Paderborn University
Warburger Str. 100, 33098 Paderborn
e-mail: {melnikov,prithag,eyke} @mail.upb.de, {bernd.frick,daniel.kaimann} @upb.de

Hotelbewertungen Fotos ( 4.526 Foren [ 10

Michael H H4 Hotel Hannover Messe
Beitragender der Stufe  “Gerne wieder, aber....." Abstract. Object ranking is one of the most relevant problems in the realm of
o preference learning and ranking. It is mostly tackled by means of two different
&' 17 Bewertungen techniques, often referred to as pairwise and pointwise ranking. In this paper,
) 9 "Hilfreich"- we present a case study in which we systematically compare two representatives
v\;enungen of these techniques, a method based on the reduction of ranking to binary
classification and so-called expected rank regression (ERR). Our experiments

wandelroeschen Maritim Airport Hotel Hannover are meant to complement existing studies in this field, especially previous
Beitragender der Stufe “Wunderbares Hotel evaluations of ERR. And indeed, our results are not fully in agreement with
o previous findings and partly support different conclusions.
(A 15 Bewertungen
©5) 4 "Hilfreich"- Keywords: Preference learning, object ranking, linear regression, logistic re-
V\;enungen gression, hotel rating, TripAdvisor

1 malaika14 Pension zur Rotbuche

- Beitragender der Stufe  “Wir kommen wieder - Preisleistungsverhdltnis- GUT'
e .
@ 9 Bewertungen 1. Introduction
©5) 6 "Hilfreich
Wertungen

Preference learning is an emerging subfield of machine learning that has received

increasing attention in recent years [3]. Roughly speaking, the goal in preference

. . learning is to induce preference models from observed data that reveals information

E conomic a Sp eCt S Of ra tl n g an d about the preferences of an individual or a group of individuals in a direct or indirect

way; these models are then used to predict the preferences in a new situation.

reputation, re Verse engineering Of In general, a preference learning system is provided with a set of items (e.g.,
B . . products) for which preferences are known, and the task is to learn a function that
rating systems such as TripAdvisor.
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Behavioral economics:
How people aggregate

customer reviews

(=2 “learning to aggregate”)

INTELLIGENT

SYSTEMS

Make your decision!

Click on a customer review to rank the third most preferred tablet.

il

Zeige Ergebnisse fir Elektronik & Foto - "kamera”

Ergebnisse anzeiger
<Alle Kategorien
Elektronik & Foto

Digtalkamoras
Kompaktkameras
Spiegelreexkameras
Kamera & Folo 7
Uberwachungskameras
Camcordar
Actonkameras

Auto-&
Fahrzeugelekdronik (5
*Waitera

Filtern nack

Vorsandoption s st s

Kostanlose Lisfarung ab EUR

20 Besialivert

Aufidsung von Digitalkameras

BisTINP
s-c9uP
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12-159 1P
16-19.9 1P
20MP & menr

Bildstabilisierung
mitBigsiabiisierung

Brillante Bilder — Zeit fur Intel

> Hiericken

.
mile
(@)
\ N—
S

Fujim 16273166 Instax Mini 8 Sofortbildkamera (62 x 46mm) pink
von Fujiilm

EUR 65,24 vPrime

Ligforung morgen, 10. September

Coolpix L340 Digitalkamera (20,2 Megapixel, 28-fach opt. Zoom, 7,6 cm (3

Dispiay, USB 2.0, bildstabilisert,

Soneren nach Beste Ergebrisse v | §
Beste Ergebrisse
Empfetlungen
el aufsteigend
Pres: absteigend

Neu eingetroffen

Andoar

Ausv Farbe

Andoer HDV-107 Digital Video Camcorder Kamera HD 720P 16MP DVR 2.7 " TFT
LCD Screen 16x ZOOM Schwarz
von Andoer
EUR 39,49 vPrime
Lisforung morgen, 10. Soptember
Andare Angebote
EUR 39,49 neu (4 Angebole;
52 Lieferung moglich.
“e2

5 Stars
4 Stars
3 Stars
2 Stars

1 Star

5 Stars
4 Stars
3 Stars
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Machine learning for the support of
technology-based consulting for the
innovation of business models.

v |
(1) Ideenerzeugung — (2) Ideenbewertung —” (3) Wissensaufbau zur
Ideenqualitat

Geschiftsmodell-
Wissensbasis
Erlésmodell (E):
- Fixpreis
- Nutzungsbasiert
- Abo/Flatrate...

Unbewertete Ideen

Idee 1
Parfim

E: Fixpreis
V: Automat

Bewertete Ideen

Idee 1
Parfim

E: Fixpreis
V: Automat

Wissen iiber
Ideenqualitét

Kognitive Anwendung

lernt,

- welche Bestandteile
von Geschafts-

:— (=]
o) c
S >

> 5 E

g 5E g

o} =& =
. -é § K:_ Keine Beratung é S K:_ Keine Beratung i A modellen

Sl A S o ) Z 0 - in welcher
Kundenbeziehung (K): @ g  Bewertung:? SRl |EcuclE = b Kombination
- Personliche Beratung W= O 3 e] 3 - far Parfiim
- Recommender System é 5| ||dee 2 3 é Ideci2 = 3 dazufohren, dass
- Ohne Bery 7] g Ilz‘azgg}Flatrate % g IED?ZngIatrate g g Kundesicll
e = | ' ' Y =

T @ V: Hausparty (,Tupper®) = © V: Hausparty (,Tupper®) -Z 2 Gt‘tesci(:'aﬂfsn;()de"

. c o y = ; o ®© attraktiv finden.
Vertriebskanal (V): SR | Peronichert e | P © 5§ Basierend auf diesem
- Filiale == | . e s : =5 i onnen i
- Hausparty (,Tupper‘) o Bewertung: ? o ] Bewertung: 2 § =z Wlssen kénnen in
_ A = N = 2 ot jeder Folge-lteration
B} 2 Idee n 3 ldeen 5 bessere Geschafts-

‘g Parfim S . Parfim % modell-ldeen erzeugt
g o < werden.

5 Bewertung: ? 0O N Bewertung: 3 .0
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Machine Learning for improving
optimization methods for the
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Analyse des Sprachausbaus und
der Entwicklung von Grammatik
im Mittelniederdeutschen.

08.02.2017 |

Fakultatsiibergreifendes DFG-Projekt im Bereich Digital
Humanities an der Universitdt Paderborn gestartet

Neues Forschungsprojekt im Bereich Digital Humanities an der Universitat Paderborn:

»interGramm® untersucht den Sprachausbau im Mittelniederdeutschen. Die Deutsche
Forschungsgemeinschaft (DFG) férdert das Vorhaben mit rund einer halben Million Euro.
Prof. Dr. Doris Tophinke (Fakultét fiir Kulturwissenschaften), Jun.-Prof. Dr. Michaela
Geierhos (Fakultat fiir Wirtschaftswissenschaften) und Prof. Dr. Eyke Hiillermeier
(Fakultat fiir Elektrotechnik, Informatik und Mathematik) arbeiten an einer interaktiven

Foto (Universitét Paderborn, Johannes Pauly): Das
interdisziplindre Forschen kennzeichnet das
Grammatikanalyse historischer Texte. innovative DFG-Forschungsprojekt ,InterGramm*

61



COOPERATION @ UPB (Seng)

ARADby: An adaptive retrieval and
analysis tool for supporting image-based
research processes

6 ¢ | ||I| N <
ANFRAGE NUTZERPRAFERENZ-
ANALYSE

—
—
—

KING

1
| 2
3
B
SUCHANFRAGE MIT TE)\
' 13

Q. -

AHNLICHKEITS- CLUSTERING
SUCHANFRAGE MIT BILD ANALYSE |
oO®e0
e 8 D
Oas 3o

KATEGORIENBILDUNG MUSTERERKENNUNG BILDANNOTATION

ARAby

LAby gets digital®: Digitalization of the systematic comparison and
analysis of images as practiced by Aby Warburg.

INTELLIGENT

SYSTEMS
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COOPERATION @ UPB (Rohlfing)

Temporal data mining for analyzing
multimodal parent-child interaction.

Infant’s attention

Mother’s input
Bodily movement

Speech

Gaze at mother

——

. INTELLIGENT
SYSTEMS

S

>

Interaction time

T T T T T
I 0 00:05:44.000 00:05:46.000 00:05:48.000 00:05:50.000 00:05:52.000
Parent go3) lu tar kaninen ja ta Kucka och lagger ner ja vi ldgger ner Kucka dar ockséjgj mm *(na:) du ska gosa lite |

P-Gaze [56]

P-ObjAct 44)

P-Speech 37]
Child pa1)
C-Gaze 42)

biAct sz way_K

C-GestFunc o]
C-Speech (o]

Grab ||Put-away K
kanin Im M

|K

[Dhndex LOC
|j

lo [k

|Reach K |Grab_K

|Hold_K |Cuddle_K |Explore_K
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Die Macht der Algorithmen:
Zur epistemologischen und gesellschaftlichen
Dimension aktueller Algorithmik.

facebook

The World’s
Cutest Cat

[
UFALTHCARE ALERT! EEE
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Machine learning for the control
of technical systems.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
5

-----
555555555555555555555555

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
il

Ell
0
x
100 i 10
o A
20 :
[ 7 B T T R B S B T R S

65



MMARY
SU h INTELLIGENT

L] SYSTEMS

= Machine learning is developing rapidly, emerging topics include
Auto-ML, large-scale learning, deep learning, ...

= Many applications and opportunities for interdisciplinary projects.
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= Machine learning is developing rapidly, emerging topics include
Auto-ML, large-scale learning, deep learning, ...

= Many applications and opportunities for interdisciplinary projects.

= \We looked at ML from the point of view of automated programming.

» Standard ML can be seen as combining knowledge and data
(revising the former in light of the latter).

= Quest for “real” automation motivates work on Auto-ML.

= ML as an art, science, and technology, with mathematical,
computational, technical, philosophical, social, psychological, and
biological dimensions, amongst others ...
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