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Abstract. Knowledge graphs (KGs) differ significantly over multiple different
versions of the same data source. They also often contain blank nodes that do not
have a constant identifier over all versions. Linking such blank nodes from differ-
ent versions is a challenging task. Previous works propose different approaches to
create signatures for all blank nodes based on named nodes in their neighborhood
to match blank nodes with similar signatures. However, these works struggle to
find a good mapping when the difference between the KGs’ versions grows too
large. In this work, we propose BLINK, an embedding-based approach for blank
node linking. BLINK merges two KGs’ versions and embeds the merged graph
into a latent vector space based on translational embeddings and subsequently
matches the closest pairs of blank nodes from different graphs. We evaluate our
approach using real-world datasets against state-of-the-art approaches by com-
puting the blank node matching for isomorphic graphs and graphs that contain
triple changes (i.e., added or removed triples). The results indicate that BLINK

achieves perfect accuracy for isomorphic graphs. For graph versions that contain
changes, such as having up to 20% of triples removed in one version, BLINK

still produces a mapping with an Optimal Mapping Deviation Ratio of under 1%.
These results show that BLINK leads to a better linking of KGs over different
versions and similar graphs adhering to the linked data guidelines.

Keywords: Knowledge graphs · Data Integration · Linked Data · Blank Nodes ·
Blank Node Matching

1 Introduction

Knowledge graphs (KGs) evolve over time where the updated KG versions normally
include added, corrected, and deleted triples. While relational databases often create
transaction logs describing changes to previous versions [11], RDF KGs are often dis-
tributed as a set of triples without any transaction history. Approaches such as [1] create
versioning strategies composing single triple changes to hierarchies. Handling blank
nodes is challenging because the identifiers of blank nodes from different graphs do not
share global identifiers. Moreover, RDF tools and libraries normally do not keep the
same blank node identifiers after processing [9]. This causes the need to rename them
or completely delete and re-add parts of the graph that are only connected by one or
multiple blank nodes [1].

According to the linked data guidelines [3], KGs should be linked to each other to
add context to data and create opportunities to gain insights by combining different data

https://dice-research.org/


2 Becker et al.

sources. For KGs with multiple versions, links must be created between the different
versions to not lose connectivity to other graphs or add unnecessary redundancy [33]
when publishing new versions. Creating links is not a big challenge for entities that are
named by a URI but is a nontrivial problem for blank nodes that can have different local
names over different versions.

Addressing this problem is important as blank nodes are widely popular in semantic
web standards [21]. For instance, blank nodes are used as a way to model lists as defined
in the RDF 1.1 standard [27] and recommended by SKOS [16]. Furthermore, blank
nodes are used to model simple existential statements. For example, if it is certain that a
professor offers a course in the next semester but it is not yet determined how the course
is named, a blank node may be used to signal that there is going to be a course, but no
other information is available yet. Blank nodes are also used in ontology languages. For
example, in the OWL2 standard [22], restrictions are modeled using blank nodes:

_:x a owl:Restriction.
_:x owl:onProperty author.
_:x owl:allValuesFrom Researcher.

Blank nodes are also used in a variety of other contexts that require matching them,
as discussed in [19], and are widely used in different KGs with more than 66% of all
domains of the BTC-2012 dataset [12] using at least some blank nodes [15].

In this paper, we present BLINK, an approach for blank node linking that computes
a mapping between the blank nodes of two graphs by first merging the two graphs into
one merged graph and computing entity embedding vectors for the blank nodes in the
merged graph. We then split the blank nodes of the merged graphs into two sets based
on what graph they originated from and create a mapping between the two sets based
on the distances between the latent vector embeddings of the blank nodes.

This paper is structured as follows: Section 2 contains the necessary definitions to
formally define the problem of graph matching and error measures used to evaluate
the quality of mappings. In Section 3, we give an overview of related work tackling
the same problems we solve in this work. We then present our approach in Section 4.
Section 5 contains experiments where we compare our approach to other algorithms on
real-world KGs and synthetic ones. Finally, we conclude our findings and explain how
this work can be extended in the future in Section 6.

2 Preliminaries

Definition 1 (Knowledge Graph). A Knowledge Graph (KG) G(R,B,P,L) is a set
of triples (s, p, o) ∈ (R∪B)×P × (R∪L∪B), where R is the set of all resources, B
is the set of all blank nodes, P is the set of all predicates, and L the set of all literals.

Definition 2 (Blank Radius). The blank radius of a blank node is the minimum number
of triples we need to traverse to find a non-blank node. For example, if a blank node is
directly connected to a non-blank node, the blank radius is 1. If the blank node is only
connected to other blank nodes, but at least one of them is connected to a non-blank
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node, the blank radius is 2. The blank radius of a graph is the maximum blank radius
of all blank nodes in the graph.

Definition 3 (Blank node component (BComponent)). Each blank node is part of
exactly one BComponent which is defined as the maximal subgraph that contains the
blank node and consists only of triples containing blank nodes as subject and object (as
defined in [18]).

Definition 4 (Graph Mapping). A mapping between two graphs G(R,B,P,L), and
G′(R′,B′,P ′,L′) is a function M that maps all resources, literals, predicates, and
blank nodes from G to G′. Formally M : (R× B × P × L) → (R′ × B′ × P ′ × L′).

Mapping named resources, predicates, and literals is a straightforward task as only
the URI or literal is to be matched. On the other hand, matching blank nodes is a non-
trivial task as blank nodes do not always have a unique injective property and two
blank nodes may have the same connections to other nodes making it impossible to
differentiate them.

Definition 5 (Isomorphism). Two graphs G, and G′ are isomorphic, iff there ex-
ists a bijective mapping function M between them, so that (s, p, o) ∈ G ⇐⇒
(M(s),M(p),M(o)) ∈ G′.

Definition 6 (Graph Delta). The difference between two graphs G, G′, denoted ∆(G,G′),
is defined as the number of triples that need to be added or removed to make the graphs
isomorphic. ∆(G,G′) is computed as the number of triples that need to be added
to G and G′ so that G and G′ are isomorphic. Formally, ∆(G,G′) = |{(s, p, o) ∈
G ∧ (s, p, o) /∈ G′}|+ |{(s, p, o) ∈ G′ ∧ (s, p, o) /∈ G}|.

While the previous definition defines the number of different triples between two
graphs, which cannot be 0 for different graphs, as blank nodes are only named locally
and differ between different documents [31], we define a similar function ∆M to mea-
sure the quality of a mapping function M . ∆M measures the graph delta between two
graphs after a mapping M is applied to one of them that renames blank nodes.

Definition 7 (Mapping Delta). ∆M (G,G′) = |{(s, p, o) ∈ G∧(M(s),M(p), (o)) /∈
G′}|+ |{(M(s)−1,M(p)−1,M(o)−1) ∈ G′ ∧ (s, p, o) /∈ G}|.

To evaluate the mapping functions and measure their quality relatively to the opti-
mal mapping function achieving the lowest possible value of ∆M in cases where the
graphs are not isomorphic, we define the Optimal Mapping Deviation Ratio (OMDR)
as follows:

Definition 8 (Optimal Mapping Deviation Ratio (OMDR)). Let G and G′ be two

non-isomorphic graphs: OMDRM (G,G′) =
∆M (G,G′)

∆optimal(G,G′)
.

As we require that the graphs are non-isomorphic, the function is well-defined. If
the mapping given to the function is optimal, i.e., needs the same number of triple
additions and deletions to make the graphs isomorphic as the optimal mapping, the
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OMDR is 1. In the case where the mapping M leads to a value of ∆M twice as high
as that of the optimal mapping, the OMDR will be 2. Mapping algorithms therefore
try to minimize their ∆M to have an OMDR as close to 1 as possible. Two different
non-optimal mappings can be compared by using the ratio of their respective OMDRs.

The two main problems we solve with our approach are the isomorphism task and
the differential task, as defined in [18]. For solving the isomorphism task, two isomor-
phic graphs are given as input, such that there exists a mapping leading to ∆M = 0. The
RDF triples are not given in the same order to prevent blank node matching algorithms
from using the order of the two graphs as a criterion for matching the graphs. The iso-
morphism task does not aim to find out whether two graphs are isomorphic efficiently,
as studied in [10], but we aim here to find a mapping for cases where the isomorphism
of two graphs is already known.

The main goal of the differential task is to map two different graphs or two different
versions of the same graph to each other while minimizing the ∆ between the two
graphs, where ∆ ̸= 0. We want to minimize the ∆M , i.e., the amount of required triple
additions and deletions, to make the graphs as isomorphic as possible.

3 Related Work

The blank node matching problem can be interpreted as an assignment problem that can
be optimized using the Hungarian algorithm [23]. The approach proposed in [30] is able
to find the optimal solution in a case when there is no triple containing blank nodes as
both subject and object, but cannot correctly handle graphs with multiple connected
blank nodes. Other algorithms to match blank nodes focus on computing a signature
value for each blank node based on the triples they are part of and then map the blank
nodes with closest signatures to each other [4]. Tzitzikas et al. [30] propose the SIGN al-
gorithm that computes the signature based on the rdf:type value for the blank node,
the predicate and subject of incoming triples, and the predicate and object of outgo-
ing triples. Lantzaki et al. [18] extend the SIGN approach with the R-SIGN algorithm
that includes the order of neighboring blank nodes into the signature. As the R-SIGN
approach works with a variable radius it is able to match blank nodes far away from
any non-blank nodes. Oraskari and Törmä [26] also build upon the SIGN algorithm by
iteratively recomputing the signatures to include nodes further away in the signature
computation if the current signature is not unique. Hogan [13, 14] creates canonical
labels for blank nodes based on a coloring of blank nodes assigned by hashing the
neighborhood of them to decide if two graphs are isomorphic. Lee et al. [20] use the
MapReduce process to match blank nodes if they have a high similarity score based on
a high amount of similar triples with a configurable threshold.

While our approach focuses on matching blank nodes between different graphs,
there are also methods for linking named entities across different graphs. Trivedi et
al. [28] propose LinkNBed where they learn representations of entities and relations
across multiple graphs and also take duplicates into account by utilizing the embedding,
the neighborhood and attributes of an entity. Buneman and Staworko try to solve the
graph alignment problem using bisimulation [6] using different alignment methods like
similarity alignment and overlap alignment.
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Another related research area to our work is that of Knowledge graph embedding
(KGE) algorithms that can be used to create latent space vector representations of nodes.
In recent years, dozens of such KGE techniques have been developed, we list here only
a few of them. RESCAL [25] computes a three-way factorization of an adjacency tensor
representing the input KG. The adjacency tensor is then decomposed into a product of
a core tensor and embedding matrices. HolE [24] uses circular correlation as its com-
positional operator. ComplEx [29] is a KGE model using latent factorization, in which
complex valued embeddings are utilized for handling a large variety of binary rela-
tions including symmetric and anti-symmetric relations. On the other hand, TransE [5]
is an energy-based KGE model, in which a relation r between two entities h and t
corresponds to a translation of their embeddings. More details on knowledge graph em-
bedding approaches and applications can be found in [32] and [7]. These and other
embedding models can be used for computing the embedding vectors for our approach.

4 Approach

BLINK takes two graphs G and G′ as input and creates a mapping M from G to G′

minimizing ∆M (G,G′). The key idea of BLINK is to compute an embedding for the
union of both graphs G+ and match the blank nodes that are close in the latent embed-
ding vector space. We divide our approach into three parts: First, we propose a method
to match G and G′ into a single graph G+ in Section 4.1. In Section 4.2, we then give
an overview of the embedding model we use. Finally in Section 4.3, we present our
algorithm BLINK to compute a mapping from the embedding vectors of G+.

4.1 Preprocessing / Graph Merging

We start our approach by merging the two input KGs into one with the following proce-
dure. We insert every triples that does not involve blank nodes from both G and G′ into
G+. To be able to distinguish from which graph a blank node originated, we extend the
local name of each blank node in its originating graph to create a globally unique name.
The global name consists of a symbol ◀ that is not contained in any URI in the graphs,
then a 0 if the blank node originates from G or a 1 if the blank node originates from
G′, another ▶ to terminate the global identifier part and concatenate the locally unique
name the blank node had in the graph it originates from. We then add the triples with
the renamed blank nodes to G+. Note that BLINK does not rely on keeping the local
name the same but is only kept for easier evaluation. Instead, the local names could also
be mapped to random strings without impacting the performance of BLINK. We only
need to distinguish from which graph the node came from and to distinguish the blank
node from other blank nodes coming from the same graph.

The merged model G+ now contains all the necessary information for the embed-
ding algorithm. An example of this algorithm is shown in Figure 1. Figures 1a and
1b contain the two graphs G and G′ respectively while Figure 1c contains the merged
graph. Note that because of the nature of the construction of G+, there are no direct
connections from any blank node of G to any blank node of G′. By merging all triples
containing only named resources, we share knowledge between the two graphs enabling
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_:b1 _:b2

ISWC2024 Baltimore USA

(a) Graph G

_:b1 _:b2

ISWC2024 Baltimore Planet Earth

(b) Graph G′

◀0▶b1 ◀0▶b2

ISWC2024 Baltimore

USA

Planet Earth
◀1▶b2◀1▶b1

(c) Merged graph G+

Fig. 1: An example of how our preprocessing would merge two graphs into one.

the embedding process to take more training data into account for computing the latent
space vectors of named resources and thereby making them more stable against being
pushed away by connections to blank nodes from different graphs.

4.2 Embedding

Our approach utilizes a translation-based embedding model based on TransE [5]. TransE
aims to make the sum of the head entity embedding and relation embedding equal to
the tail entity embedding as shown in Equation 1, with γ being a margin parameter,
σ being the sigmoid function, and emb(x) returning the embedding vector of x. We
use the default γ = 4 for our approach as implemented within the DICE embeddings
framework [8]. Our matching is based on the fact that similar nodes have similar latent
space embedding vectors. To not lose any information, we also include literals in the
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embedding process.

ŷi(head, rel, tail) = σ(γ − ∥emb(head) + emb(rel) − emb(tail)∥2) (1)

The main challenge to overcome is the fact that we do not have any connections
between any blank node from G to any blank node from G′. Going with our example
in Figure 1c, there is no connection from ◀0▶b1 to ◀1▶b2 and no connection from
◀1▶b1 to ◀0▶b2 even though _:b1 from G and _:b1 from G′ as well as _:b2
from G and _:b2 from G′ are semantically equivalent. This would lead the embedding
process to push the latent space vectors of ◀0▶b2 and ◀1▶b2 away from each other
as there is a connection from ◀0▶b1 to ◀0▶b2 but not from ◀0▶b1 to ◀1▶b2.

Therefore we have to adapt the training process and change the way the target value
is decided.

Normally, the neural network should handle each input triple xi=(head, rel, tail) in
such a way that ŷi=1 if the triple exists in the graph and ŷi=0 if the triple does not
exist in the graph. But this would not be the case with our previously defined challenge.
Therefore, we have changed the target function as shown in Equation 2.

yi(head, rel, tail)=


1 :(head, rel, tail) ∈G+

0.5 :head and tail are both blank nodes ∧ head ∈ G ∧ tail ∈ G′

0.5 :head and tail are both blank nodes ∧ head ∈ G′ ∧ tail ∈ G
0 :otherwise

(2)
We then adapt the binary cross entropy (BCE) loss function to ignore the triples with
yi=0.5 in the loss function computation by multiplying the result of the BCE loss func-
tion with a term to ignore said triples as shown in Equation 3. These two changes result
in the model ignoring any triple that contains blank nodes originating from two differ-
ent graphs preventing the embedding vectors of similar blank nodes from being pushed
away from each other.

L(yi, ŷi)=−
N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) · ((yi − 0.5)2 · 4) (3)

4.3 Matching

Let B be the set of all blank nodes in G and B′ be the set of all blank nodes in G′.
We then compute the pairwise Euclidean distance between the embedding vectors of
all blank nodes within B and all embedding vectors of all blank nodes within B′ into
the distance matrix D with Di,j being the Euclidean distance between the embedding
vectors of Bi and B′

j . Let M=∅ be the resulting mapping of the algorithm. Then our
matching algorithm proceeds to match the closest blank nodes until there are no un-
matched blank nodes left in B or B′ as shown in Algorithm 1. By using this algorithm
we get a one-to-one mapping for all blank nodes mapping the most similar blank nodes
to each other if |B|=|B′|. If the number of blank nodes is not the same in both graphs
then this algorithm computes the most probable min(|B|, |B′|) matches and leaves the
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Algorithm 1 MatchBlankNodes(B,B′, D)

1: Input: The set of blank nodes of both graphs B and B′ and a matrix D containing the pair-
wise euclidean distances of all embedding vectors of the nodes of B to the nodes of B′

2: Output: A mapping M between the blank nodes
3: while B ̸=∅ ∧B′ ̸=∅ do
4: (i, j)←argmin(i,j) Di,j

5: M←M ∪ (Bi, B
′
j)

6: B←B − {Bi}
7: B′←B′ − {B′

j}
8: D′

k,l←Dk,l ∀ (k, l) 1≤k<i ∧ 1≤l<j
9: D′

k,l←Dk+1,l ∀ (k, l) i<k≤|B| ∧ 1≤l<j
10: D′

k,l←Dk,l+1 ∀ (k, l) 1≤k<i ∧ j<l≤|B′|
11: D′

k,l←Dk+1,l+1 ∀ (k, l) i<k≤|B| ∧ j<l≤|B′|
12: D←D′

13: end while
14: return M

remaining nodes without a matched blank nodes from the other graph. By removing
already matched blank nodes from the yet-to-be-matched nodes and the distance ma-
trix, we ensure that we do not run into problems if multiple blank nodes have the same
connections to other nodes and therefore very similar embedding vectors. Otherwise, it
would be possible for multiple blank nodes of one graph to match with a single blank
node from the other graph which would leave some blank nodes of the other graph
without a matching blank node.

5 Evaluation & Results

To evaluate our approach, we conducted experiments using real-world KGs. We com-
pare the results of our approach with multiple different numbers of training epochs to
current state-of-the-art algorithms described in Section 3.

Research questions. We aim to answer the following research questions:

Q1. Does the accuracy of BLINK increase with a larger number of training epochs?
Q2. How does a higher number of BComponents affect BLINK for the isomorphism

task?
Q3. Is BLINK able to match blank nodes correctly for larger BComponents coming

from isomorphic graphs?
Q4. How is the accuracy impacted by adding triples that contain existing blank nodes

as subjects and random strings as predicates and objects?
Q5. Are the approaches robust concerning added triples with blank nodes as subjects

and random known relations and entities from the graph as predicates and objects?
Q6. What effect does splitting up BComponents have on the accuracy of the approaches?
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Dataset |Triples| |BNodes| |BBNodes| |BTriples| |BBTriples| BRadius |BC|

Military 30000 2827 1452 30000 2749 2 78
CraftNode 29980 4739 2815 29980 3846 2 893
Synl

∑l
i=1 4 · 4

i ∑l
i=1 4

i−1 ∑l
i=1 4

i−2 ∑l
i=1 4 · 4

i ∑l
i=1 4·4

i−1 l 1

Table 1: Dataset statistics for the used datasets showing in order: number of triples,
number of blank nodes, number of blank nodes only connected to other blank nodes,
number of triples containing at least one blank node, number of triples containing two
blank nodes, the blank radius, and the number of BComponents of the graph. The
CraftNode dataset consists of only 29980 triples because there are 20 duplicate triples
in the last 30000 lines of the dataset.

Setup. We present the results for BLINK using {16, 32, 64, 128, 256} training epochs
dubbed BLINK [#epochs]. The embedding and matching of our approach use the DICE
embeddings library1 [8] .We use an embedding dimension of 32 and a batch size of 1024
for our experiments. To make the results reproducible, we use 1 as a seed for random
number computation wherever applicable. As a baseline or matching quality, we use the
signature algorithm [30] extended by [18], dubbed SIGN, and the radius-based signature
algorithms [18] with {2, 3, 1000} as parameters for the radius dubbed R-SIGN [radius].
We also report the result for not mapping any blank nodes as NO MAPPING and the
best achieveable ∆M dubbed OPTIMAL MAPPING.

Datasets. The first and second datasets we use for our experiment are subsets of
LINKEDGEODATA [2]. In particular, we use the last 30000 lines of the MilitaryThingN-
ode and CraftNode subset of LINKEDGEODATA because of the high number of triples
containing blank nodes. Statistics regarding the datasets are listed in Table 1. As a third
dataset, we use a synthetic dataset dubbed Synl with l being the number of layers gen-
erated by us representing one big BComponent created by starting with a single blank
node and subsequently adding a layer of 4layer index blank nodes around it and therefore
increasing the blank radius of the graph by one. All blank nodes, except for the first
one, have 4 random connections to blank nodes of the previous layer. The outermost
layer consists of 4l+1 named resources again randomly connected with 4 links to blank
nodes of the previous layer.

5.1 Isomorphism Mapping

As input for the isomorphism task, we created two copies of the same dataset, where
we changed the order of one of them to prevent the algorithms from making decisions
based on the order of triples. As both dataset instances contain the exact same triples,
the optimal solution for matching the blank nodes results in ∆M=0.

Q1: Accuracy over different numbers of training epochs. The results for the Military-
ThingNode dataset are shown in Figure 2. As expected, the ∆M is 60000 if no blank

1 version 0.0.5 https://pypi.org/project/dicee/0.0.5/

https://pypi.org/project/dicee/0.0.5/
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60000No Mapping

0Optimal Mapping

2980SIGN

0R-SIGN2

0R-SIGN3

0R-SIGN1000

2882BLINK 16

782BLINK 32

44BLINK 64

0BLINK 128

0BLINK 256

∆M

Fig. 2: ∆M for the isomorphism task using the MilitaryThingNode dataset for the blank
node matching algorithms from Section 5.

nodes are matched because every triple in the dataset contains at least one blank node.
Therefore, no triple from one graph is equal to any triple in the other graph and all
triples from one graph have to be removed and all triples from the other graph have
to be added to make both graphs equal. The SIGN algorithm can reduce the ∆M to
2980 while the R-SIGN algorithm obtains an optimal result for all radii. This result
is expected, as the R-SIGN algorithm is proven to produce the optimal result for the
isomorphism task in case the radius parameter is at least as big as the blank radius of
the graph[18]. The mapping of BLINK achieves a ∆M of 2882, 782, and 44 for 16, 32,
and 64 training epochs, respectively. Starting at 128 training epochs, BLINK produces
a perfect mapping. This answers our first research question, Q1, indicating that our em-
bedding process indeed puts similar blank nodes closer to each other in the embedding
space the more epochs we train. Accordingly, the quality of the mapping produced by
BLINK increases with an increasing number of training epochs.

Q2: Higher number of BComponents. The mapping ∆ for the CraftNode dataset is
shown in Figure 3. The SIGN algorithm can match the graphs up to a ∆M of 7174 while
the R-SIGN algorithms can find a perfect mapping as the blank radius of this radius is
only 2. BLINK achieves a ∆M of 9496 and 4658 for 16 and 32 epochs respectively.
Starting at 64 epochs, BLINK produces an optimal mapping, which again confirms our
answer for Q1. The number of blank nodes that are only connected to other blank nodes
and especially the number of BComponents in this dataset are larger than in the Mili-
taryThingNode dataset which shows that BLINK is also able to handle datasets with less
known URIs and more possibilities for incorrect matches. This answers our research
question Q2.
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59960No Mapping

0Optimal Mapping

7174SIGN

0R-SIGN2

0R-SIGN3

0R-SIGN1000

9496BLINK 16

4658BLINK 32

0BLINK 64

0BLINK 128

0BLINK 256

∆M

Fig. 3: ∆M for the isomorphism task using the CraftNode dataset for the blank node
matching algorithms from Section 5.

Q3: Large BComponents. To answer our research question Q3, we conducted an ex-
periment with the Synl dataset with l={1, 2, 3, 4, 5, 6, 7} to find out how well BLINK
can handle different BComponent sizes. The results are presented as a heatmap in Fig-
ure 4. After only 16 training epochs, BLINK can find a perfect matching for the synthetic
datasets up to a radius of 5. For a radius of 6, BLINK requires more training epochs as
there is a small ∆M for 16 epochs but it can produce a perfect result after 32 epochs.
The task gets harder when the blank radius is 7, but even then BLINK can compute an
optimal mapping after 64 epochs. This answers our research question Q3. Interestingly,
even the signature and radius-based signature algorithms with a radius smaller than the
blank radius achieve perfect accuracy. This happens because the extended version of
the signature algorithm [18] creates deterministic counters for adjacent blank nodes en-
hancing the performance massively for isomorphic graphs in comparison to the default
SIGN algorithm [30].

5.2 Differential Mapping

For the differential task, we focus on how well the approaches perform when changing
the dataset. We simulate different versions of a dataset by adding and removing triples
from one graph instance. In this case, the optimal mapping solution would have a ∆M

equal to the number of added and removed triples. We evaluate the results of this set of
experiments using the Optimal Mapping Deviation Ratio (OMDR) as defined in Defi-
nition 8. As the OMDR depends on the ∆M of the optimal mapping as its denominator,
the OMDR can increase for a higher number of changed triples, because the optimal
mapping also has a higher ∆ even though the absolute number of triple changes in-
creases. The optimal ∆ for this task is determined by the number of triples added or
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0 0 0 0 0 0 0

32 160 672 2720 10912 43680 174752

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 84 28954

0 0 0 0 0 0 758

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Optimal Mapping

No Mapping

SIGN

R-SIGN2

R-SIGN3

R-SIGN1000

BLINK 16

BLINK 32

BLINK 64

BLINK 128

BLINK 256

Syn1 Syn2 Syn3 Syn4 Syn5 Syn6 Syn7

Fig. 4: ∆M for the isomorphism task using synthetic datasets.

removed from the dataset instance we change. Interestingly, 1% of added triples would
result in an optimal ∆ of 300, while 10% would result in ∆=3000. Therefore, the re-
ported numbers in Figures 5, 6, and 7 are not to be compared over different columns
because the OMDR base is different in each column. A higher OMDR in column c1 is
not worse than the OMDR in another column c2 if the optimal ∆ is smaller in column
c1.

Q4: Adding triples with new objects. For the first experiment of this task, we use
the MilitaryThingNode dataset and add new triples with existing subject URIs, random
predicate URIs, and random object URIs to one instance of the dataset. We want to
evaluate how the algorithms can deal with new additions to the dataset and at what
percentage of new triples the performance starts to drop. We therefore conduct this
experiment with {2, 4, 6, 8, 10, 20, 50}% of added triples. Figure 5 shows the results of
the experiment. Even for 2% of added triples, no signature-based algorithm produces a
mapping with less than 10 times more needed changes to make the graphs isomorphic
in comparison to the optimal mapping. BLINK, however, is able to compute a perfect
result after 128 training epochs, mapping no blank node incorrectly to its equivalent
blank node in the other graph. Even for only 16 training epochs, BLINK only has an
optimal mapping deviation of almost half of the signature algorithms. These results
show that BLINK can quickly produce results outperforming the state of the art and
slowly converge to the smallest ∆M achievable for the given dataset.

Q5: Adding triples with existing objects. For the second experiment of the differen-
tial task, we aim to answer research question Q5. We start with the MilitaryThingNode
dataset, but instead of adding triples with random predicates and objects, we add triples
with already existing predicates and objects. We want to find out if BLINK is also able
to compute good mappings between the two graphs if not only new entities are added
and linked to existing entities but existing entities are linked to other already existing
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1.000 1.000 1.000 1.000 1.000 1.000 1.000

101.000 51.000 34.333 26.000 21.000 11.000 5.000

14.333 11.848 10.720 9.514 9.457 7.128 4.129

10.743 10.515 10.048 9.178 9.241 7.084 4.120

10.743 10.515 10.048 9.178 9.241 7.084 4.120

10.743 10.515 10.048 9.178 9.241 7.084 4.120

5.780 3.413 2.620 2.228 1.993 1.494 1.321

2.870 2.253 1.941 1.811 1.709 1.441 1.195

1.067 1.065 1.068 1.068 1.041 1.055 1.143

1.000 1.000 1.000 1.082 1.001 1.002 1.019

1.000 1.000 1.000 1.020 1.000 1.000 1.002

Optimal Mapping

No Mapping

SIGN

R-SIGN2

R-SIGN3

R-SIGN1000

BLINK 16

BLINK 32

BLINK 64

BLINK 128

BLINK 256

2% 4% 6% 8% 10% 20% 50%

Fig. 5: Optimal Mapping Deviation Ratios for the differential task with random triples
added to the MilitaryThingNode dataset. The different columns show the ∆ for different
percentages of added triples.

entities. This is important because in real-world applications new links between exist-
ing entities can be added to complete a knowledge graph as in link prediction [34] or
through manual completion of the knowledge graph. We conduct the experiment with
{1, 2, 4, 6, 8, 10, 20} % of added triples. The results of this experiment are shown in
Figure 6. For a small amount of 1% added triples, all algorithms are able to gener-
ate mapping for some blank node. However, the SIGN algorithm still only achieves an
OMDR of 19.26. The radius-based sign algorithms all achieve the same result again as
the radius of the dataset remains 2. They achieve an OMDR of 11.193. BLINK produces
a more accurate mapping at just 16 epochs of training with an Optimal Mapping Devi-
ation Ratio of 11.907, i.e., almost twice as accurate as the R-SIGN algorithms. With a
growing number of epochs, BLINK can produce a result that is even more accurate with
an OMDR of 3.72. For a higher number of added triples (10%), all algorithms are closer
to the number of changes required with the optimal mapping. Not mapping any blank
nodes results in an OMDR of 21 which is surpassed by the SIGN algorithm with a devi-
ation ratio of 9.858. The R-SIGN algorithms only marginally beat the SIGN algorithm
in accuracy with a deviation ratio of 9.749. BLINK, however, is still able to produce a
nearly accurate mapping with a deviation ratio of 1.977 for 16 epochs and 1.286 for 256
training epochs. This result indicates that BLINK can correctly match blank nodes even
if the dataset gets altered by adding more links between the existing resources in the
dataset. BLINK is more robust against changes than the SIGN and R-SIGN algorithms
for different amounts of added triples and outperforms their mapping for all numbers
of training epochs we tested. Furthermore, training of BLINK would lead to an even
smaller ∆M computed by BLINK allowing the user to choose how much time should
be invested into finding a high-quality mapping by increasing or lowering the number
of training epochs. This answers our research question Q5.
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1.000 1.000 1.000 1.000 1.000 1.000 1.000

201.000 101.000 51.000 34.352 26.000 21.000 11.002

19.260 13.827 14.432 11.805 9.707 9.858 7.025

11.193 10.543 13.392 11.367 9.463 9.749 6.999

11.193 10.543 13.392 11.367 9.463 9.749 6.999

11.193 10.543 13.392 11.367 9.463 9.749 6.999

11.907 5.730 3.380 2.596 2.213 1.977 1.487

6.787 2.817 2.210 1.953 1.778 1.637 1.403

3.613 1.390 1.442 1.447 1.422 1.406 1.318

3.807 1.250 1.295 1.331 1.346 1.329 1.292

3.720 1.163 1.220 1.251 1.310 1.286 1.278

Optimal Mapping

No Mapping

SIGN

R-SIGN2

R-SIGN3

R-SIGN1000

BLINK 16

BLINK 32

BLINK 64

BLINK 128

BLINK 256

1% 2% 4% 6% 8% 10% 20%

Fig. 6: Optimal Mapping Deviation Ratios for the differential task with triples contain-
ing known predicates and objects added to the MilitaryThingNode dataset. The different
columns show the deviation for different percentages of added triples.

Q6: Removing triples. For the third experiment of the differential task task, we re-
moved a different number of triples from the dataset. To prevent completely removing
blank nodes, we made sure that each blank node is still contained in at least one triple.
We conducted the experiment with {1, 2, 4, 6, 8, 10, 20} % of removed triples to deter-
mine how many triples are necessary for BLINK and the other algorithms to work and at
what percentage of triple removal the performance starts to drop. Because of the triple
removal, some of the BComponents get split up which poses an extra challenge for the
signature-based algorithms. The amount of BComponents is shown in Table 2.

The results of this experiment are shown in Figure 7. Like the last experiment, our
results show that BLINK outperforms all signature-based algorithms. The OMDR of
BLINK is less than half of the OMDR of all other algorithms for all tested percentages
of removed triples. Even when removing 20% of triples from the graph, BLINK com-
putes a mapping with only a 0.3% higher ∆M than the optimal mapping. Meanwhile,
the signature algorithms only achieve a 627.6% higher ∆M than the optimal possible
mapping. The OMDR for BLINK stays almost constant for a different number of re-
moved triples (and therefore split up BComponents) with OMDRs between 1.000 and
1.008 for 256 training epochs. This answers our last research question Q6. Our results

Removed Triples 0% 1% 2% 4% 6% 8% 10% 20%
BComponents 78 99 107 133 156 197 215 354

Table 2: The number of BComponents for the dataset versions with different percent-
ages of triples removed.
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1.000 1.000 1.000 1.000 1.000 1.000 1.000

199.000 99.000 49.000 32.333 24.000 19.000 9.000

31.913 22.043 16.250 13.323 11.868 10.077 6.285

23.920 18.833 15.232 12.917 11.675 9.970 6.276

23.920 18.833 15.232 12.917 11.675 9.970 6.276

23.920 18.833 15.232 12.917 11.675 9.970 6.276

10.493 5.760 3.412 2.597 2.192 1.956 1.494

3.653 2.367 1.670 1.481 1.337 1.261 1.175

1.107 1.107 1.032 1.024 1.019 1.008 1.012

1.000 1.000 1.000 1.006 1.004 1.000 1.003

1.000 1.000 1.008 1.000 1.000 1.003 1.003

Optimal Mapping

No Mapping

SIGN

R-SIGN2

R-SIGN3

R-SIGN1000

BLINK 16

BLINK 32

BLINK 64

BLINK 128

BLINK 256

1% 2% 4% 6% 8% 10% 20%

Fig. 7: Optimal Mapping Deviation Ratios for the differential task with random triples
removed from the MilitaryThingNode dataset. The different columns show the deviation
for different percentages of removed triples.

indicate that BLINK is robust against splitting up BComponents as well as overall miss-
ing triples in the graph.

6 Conclusion & Future Work

In this paper, we propose BLINK, an approach for matching blank nodes that works
by merging two graphs, embedding the merged graph into a latent vector space, and
subsequently matching the blank nodes that are closest to each other in the embedding
space. The experiments regarding the isomorphism task show that BLINK’s accuracy is
up to par with current state-of-the-art algorithms, as it also finds the optimal mapping
solution after a sufficient number of epochs. For the differential task, our finding is
that BLINK significantly outperforms other algorithms and in most cases computes a
solution that is very close to the optimal mapping.

Further studies need to be carried out to assess the impact of using different em-
bedding models and loss functions on the accuracy of the mapping. It is also worth
investigating whether removing a part of the triples based on a low gain of information,
similar to the process described in [17], results in a better runtime/accuracy tradeoff
than using all triples for the embedding vector computation. It might also be beneficial
to combine BLINK with signature-based approaches to reduce the time it takes to com-
pute a matching. For example, blank nodes that have BComponent matches with the
other graph can be computed quickly by using R-SIGN [18]. BLINK could then be used
to match blank nodes that do not have an equivalent BComponent in the other graph.

Supplemental Material Statement: Source code for merging graphs and signature-based
algorithms as well as the delta computation and the source code for the embedding
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process, training files, datasets, blank node mappings, created models, and a CSV of
computed embedding vectors for each entity are available from our Github2.
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