
C++ Programming Final Project

C++ Programming

Final Project
Implementing a Variant of the Smith-Waterman Algorithm

Secure Software Engineering Group
Philipp Schubert

Version 1.4

July 19, 2021

Solutions to this sheet are due on 30.08.2021 at 16:00. Please hand-in a digital version of your an-
swers via PANDA at https://panda.uni-paderborn.de/course/view.php?id=22691.
Note: If you copy text or code elements from other sources, clearly mark those elements and state the
source. Copying solutions from other students is prohibited.

Solving this project is mandatory in order to pass the course and obtain the certificate. Copying
solutions from other students is prohibited. Caution: If you are working on Linux/Unix/Mac you may
need to use the additional compiler flag -pthread at the end of your compile command to specify the
POSIX thread model to be used. The idea for this project originates from a similar project developed by
Prof. Dr. Ralf Möller, Technische Informatik, Bielefeld University.

Introduction

The Smith-Waterman algorithm (SMA) is a well-known algorithm from Bioinformatics that is used to
evaluate the similarities of (text) sequences. In this project, you will develop a small command-line
application that implements a variant of this algorithm. Threads shall be used to make use of modern
multi-core architectures. In this work, you will learn how C++ can be used to implement a more advanced
algorithm efficiently. The resulting program’s runtime may vary between several seconds up to one hour
depending on the quality of your implementation.

Requirements of the Program

Your application has to meet the requirements as described in the remainder of this document. Further-
more, your program must be parameterizable using the following parameters: <program> <input
file Fin1> <input file Fin2> <number of threads #T> <output file Fout>. You are
allowed to use further optional arguments. Your program should print an error/help message if it is run
with no parameters or an incorrect parametrization.

Inputting Genome Sequences

As mentioned in the introduction, SMA is used to assess the similarities of character sequences. The
origin of these character sequences does not matter to the algorithm. However, in the context of Bioinfor-
matics, DNA-(desoxyribose nucleic acid)sequences or AA-(amino acid)sequences are usually compared
to each other. This is why we restrict ourselves to analyze DNA-sequences in this project. To process

Page 1

https://panda.uni-paderborn.de/course/view.php?id=22691

C++ Programming Final Project

and compare two sequences, they have to be loaded from disk into program variables to main memory
first. You have to provide some functionalities to read the DNA sequences SOX3 and SRY. The DNA-
sequences are stored in a file format called .fas (fasta). fasta files are plain text files that contain
one or more sequences each of which is associated with an additional header line that is introduced by
the ’>’ character. Here is an example:

> This is the header line
This is a DNA sequence ATGTCGACAAT...
Note that line breaks are allowed
as well as lower AND upper case letters.

DNA sequences may contain the characters ’A’/’a’ (adenine), ’C’/’c’ (cytosine), ’G’/’g’ (guanine),
’T’/’t’ (thymine) representing the four DNA bases that usually make up our genome. Sequence files
can be relatively large, which is why you should read those files as single blocks. In order to do that,
determine the size of the file by creating a variable of type std::ifstream. Use the member functions
seekg() and tellg(). Once you have determined the file size, do not forget to reposition the input position
indicator back to the beginning of the file. Next, you can allocate a buffer (use a suitable type here,
std::string, for instance, and try to avoid using a variable of a low-level type such as char*) that is large
enough to hold the entire file contents. Once your buffer is set up correctly, you can read a file’s contents
directly to the buffer without the need for potentially expensive reallocation(s). Use the member function
read() of your std::ifstream variable that expects a pointer to a buffer and the number of bytes it should
read. If you decide on using std::string, you can get a pointer to std::string’s underlying buffer using its
member function data(), which you can then pass to the read() function. By doing so, you achieve fast
IO while being able to use the comfort of a high-level typed variable. After having read the files, remove
the fasta-header line(s) as well as all ’\n’ (new line) and other whitespace characters and convert all
lower case letters to upper case letters.

Comparison of the Sequences

The Smith-Waterman algorithm computes a score between two sequences m and n with length |m| and
|n|, accordingly. The score describes the similarity of these two sequences (higher is better) and can be
computed with help of a matrix H with dimensions (|m|+ 1)× (|n|+ 1). The elements of the first row
and first column of H are initialized as follows:

H(i,0) = 0, 0≤ i≤ m (1)

H(0, j) = 0, 0≤ j ≤ n (2)

The remaining entries of the matrix are computed iteratively using the following three weights:

ωmatch• ωmismatch• ωgap•

The weight for a comparison between two characters a and b is defined as

ω(a,b) =

{
ωmatch, a = b
ωmismatch, a 6= b

(3)

The elements of H with indices 1 ≤ i ≤ m and 1 ≤ j ≤ n are computed according to the following
function:

H(i, j) = max


0
H(i−1, j−1)+ω(ai,b j) match/mismatch
H(i−1, j)+ωgap deletion
H(i, j−1)+ωgap insertion

(4)

Page 2

C++ Programming Final Project

After having computed the complete matrix H, the Smith-Waterman score (SMS) is the maximum of all
of H’s entries. Implement a function that computes the SMS for two strings. Check the correctness of
your implementation by using the following example: m = ACACACTA and n = AGCACACA and use
the weights ωmatch = 2, ωmismatch = ωgap = −1. Use these weights throughout the whole project. This
example should produce the matrix shown in Table 1.

Table 1: Example matrix

- A C A C A C T A
- 0 0 0 0 0 0 0 0 0
A 0 2 1 2 1 2 1 0 2
G 0 1 1 1 1 1 1 0 1
C 0 0 3 2 3 2 3 2 1
A 0 2 2 5 4 5 4 3 4
C 0 1 4 4 7 6 7 6 5
A 0 2 3 6 6 9 8 7 8
C 0 1 4 5 8 8 11 10 9
A 0 2 3 6 7 10 10 10 12

In this example, the SMS is 12 since 12 is the largest value stored in H. You can also check the cor-
rectness of your implementation using the web application provided at http://rna.informatik.
uni-freiburg.de/Teaching/index.jsp?toolName=Smith-Waterman.

Do you really need to build the entire matrix to compute the SMS for two sequences? Adjust your
implementation such that is uses only two rows for the computation of the score (you have to keep track
of the largest value computed so far; when having computed the very last row, that will be your SMS).

Parallelization of the Algorithm

The similarity of the gene sequences SOX3 and SRY should now be calculated in parallel using your SMS
implementation. Therefore, each segment of 50 consecutive characters in the first sequence smi must be
compared to each segment of 50 consecutive characters of the second sequence sn j (|smi | = |sn j | = 50).
If an SMS comparison of two 50 character segments leads to a score of at least 70 (you can try a few
different thresholds), the start positions of the two segments i and j in their respective sequence as well
as the score should be stored in a std::vector. It makes sense to create a small data structure triple
(or use std::tuple) that is capable of storing these three values and to create a global variable of type
std::vector<triple> to store the comparisons that have a score larger than the threshold; these are your
raw results.

The parallelization using multiple threads can be done by splitting one of the sequences (for instance
the first one m) in #T different regions rmi . Each 50 character segment within the smaller regions rmi

must be compared to each 50 character segment in the second sequence. Do not forget any comparisons
at the borders of the regions. Also, do not perform computations twice. You may wish to make use of
an STL container’s member function at() when accessing the character sequences which performs range
checking and throws an exception whenever you accidentally try to perform an access out of bounds.
Once your are confident that your implementation is correct, you can then switch over to operator[] to
potentially increase performance.

Design your program in such a way that it receives the number of threads #T to be used as a
command-line parameter. To implement the design discussed in the above, it makes sense to design
a callable class (that is a class implementing operator()—the call operator) that receives all the data it
needs to know in order to do the processing at its construction. Implement the call operator to start the

Page 3

http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Smith-Waterman
http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Smith-Waterman

C++ Programming Final Project

desired computation(s). Create instances of this class in a suitable way and hand them over to std::thread
variables that start the actual computations described in your callable class by calling the call operator.

If a thread detects that the result of a segment-comparison produces an SMS ≥ 70, save the result in
the global variable of type std::vector<triple>. (Hint: use the member function push back() of std::vector
that allows you to add an entry to the end of the std::vector-typed variable. If required, push back()
automatically adjusts the size of the std::vector variable). Avoid race conditions by using a std::mutex
lock, for instance!

Since all of the threads are only reading from the two gene sequences, it makes sense to store them
in two global variables (synchronization is not required in this case). All threads can share the gene
sequences and thus unnecessary copying of subsequences can be avoided which would otherwise highly
degrade performance. (You may have to adjust the parameter list of your function that implements the
SMS computation to match such a design.) Do not forget to join your threads once you have created
them.

Post Processing and Outputting the Results

After having computed and stored the raw results in a std::vector variable, one post processing step
must be performed. For each start position in a sequence find the corresponding start position in the
other sequence with the largest score. Store those findings—the post-processed findings—in a separate
std::vector variable. For instance, the following (fictional) results:

start in SOX3 start in SRY score
100 2010 81
100 2011 83
100 2012 86
142 541 99
142 542 81
142 543 94

will be post-processed to:

start in SOX3 start in SRY score
100 2012 86
142 541 99

Finally, write each entry of the post-processed results to a file in .csv (comma-separated values)
format as shown below:

start in SOX3,start in SRY,score
100,2012,86
142,541,99

You can use the Python script plotSMSresults.py to plot the results in a scatter plot. Your plots
should look similar to the ones shown in Figure 1 and Figure 2.

Page 4

C++ Programming Final Project

Figure 1: Raw results of the comparison between SOX3 and SRY.

Figure 2: Post-processed results of the comparison between SOX3 and SRY.

Help

If you need help, do not understand the exercise, or get stuck while trying to solve the exercise, please
feel free to send me an email. If necessary, we can also schedule a (remote) meeting to discuss problems.

Page 5

	Introduction
	Requirements of the Program
	Inputting Genome Sequences
	Comparison of the Sequences
	Parallelization of the Algorithm
	Post Processing and Outputting the Results
	Help

