
!

C++ PROGRAMMING

Lecture 13

Secure Software Engineering Group

Philipp Dominik Schubert

CONTENTS

1. Introduction to the final project

1. Input files

2. Smith-Waterman algorithm

3. Comparing the sequences / parallelization

4. Post processing and output files

2. Miscellaneous and advanced topics

3. What next?

© Heinz Nixdorf Institut / Fraunhofer IEM2

Introduction to the project

 Compare genome sequences to each other

 DNA sequencing machines

 Decode DNA molecules

 Produce massive sequence (text) files

 E.g. ion torrent sequencer

 Price: ~ $ 50.000

© Heinz Nixdorf Institut / Fraunhofer IEM3
[Figure taken from http://gizmodo.com/5709604/got-50000-you-can-buy-yourself-a-personal-dna-sequencing-machine]

Introduction to the project

 Sequence alignment

 ATTGACCTGA

 ATCCTGA

 How to find an optimal alignment?

 Smith-Waterman algorithm

 Find optimal alignment score (similarity)

 Find optimal alignment (according to the score)

© Heinz Nixdorf Institut / Fraunhofer IEM4
[Figure taken from http://gizmodo.com/5709604/got-50000-you-can-buy-yourself-a-personal-dna-sequencing-machine]

 What is an alignment?

 An alignment is a sequence of operations that transforms one sequence into another one

 Allowed operations

 Substitution

 Copy

 Deletion

 Insertion

Introduction to the project

© Heinz Nixdorf Institut / Fraunhofer IEM5
[Figure taken from http://gizmodo.com/5709604/got-50000-you-can-buy-yourself-a-personal-dna-sequencing-machine]

Input files

 Sequence files are in fasta format

 .fasta

 .fas

 .fa

> A fasta example header

ATAAGGTACGACACACT

AGATacacacatgAAAG

AACAGACTTAtattTTT

 Sequence files can be huge

 Reading line by line is usually too slow

 Read file as one block

 No need for memory mapped files

 Tasks to solve

 Read files from disk

 Remove the header line

 Remove line breaks '\n'

 Convert to upper case letters

© Heinz Nixdorf Institut / Fraunhofer IEM6

Smith-Waterman
algorithm

 Perform algorithm on

 ACGA

 TCCG

 Weights

 𝜔𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = 𝜔𝑔𝑎𝑝 = −1

 𝜔𝑚𝑎𝑡𝑐ℎ = 2

 Create matrix

 Initialize first row to 0

 Initialize first column to 0

 Fill matrix according to recurrence

 Largest matrix entry is the score

 (Optimal alignment could be reconstructed from matrix)

 We are only interested in the score: Do we really need a matrix? No!

© Heinz Nixdorf Institut / Fraunhofer IEM7

\ 𝜖 A C G A

𝜖 0 0 0 0 0

T 0 0 0 0 0

C 0 0 2 1 0

C 0 0 2 1 0

G 0 0 1 4 3

http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Smith-Waterman

http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Smith-Waterman

Parallelization, calling the Smith-Waterman algorithm multiple times

 Compare each 50 character segment of
sequence 𝑛 to each 50 character segment of
sequence 𝑚 using the Smith-Waterman algorithm

 Split into subtasks

 Suppose running two threads

 Split sequence 𝑛 into two parts

 One thread compares every segment of first
part to every segment of second sequence

 Other thread compares segments of second
part to every segment of second sequence

 Caution at borders of parts

 Caution for thread working on last part

 Both sequences are only read from (no need for
synchronization)

 Make both sequences global variables!

49

49
…

…

 You may wish to use at() rather than operator[]
to ensure indices are within valid bounds or use
Clang’s sanitizers or Valgrind

© Heinz Nixdorf Institut / Fraunhofer IEM8

How to model the tasks?

 Model a task as a class

 Provide member variables to capture all required
information to solve the task

 Start of its corresponding part in sequence 𝑛

 End of its corresponding part in sequence 𝑛

 …

 Provide a constructor to correctly initialize
members and set up the task

 Implement the call operator to start the actual
computations

 Example

/* this is not complete */

class SWDTask {

private:

size_t seq_one_start;

size_t seq_one_end;

int smith_waterman_distance(…);

public:

SWDTask(size_t sos, size_t soe);

void operator() ();

};

© Heinz Nixdorf Institut / Fraunhofer IEM9

Caution: avoid unnecessary copies of std::string

 Copying data blocks the processors

int smith_waterman_distance(std::string a, std::string b);

for (/* hot loop */) {

smith_waterman_distance(/* ... */, /* ... */);

}

A. Have the sequences as global variables and just pass start and end positions

std::string n = /* ... */;

std::string n = /* ... */;

int smith_waterman_distance(int start, int end);

for (/* hot loop */) {

smith_waterman_distance(/* ... */, /* ... */);

}

B. Or use C++ 17 std::string_view

 Runtimes may vary from
several seconds up to one
hour!

© Heinz Nixdorf Institut / Fraunhofer IEM10

Post processing

 For each starting position in one sequence

 Find the starting position in the other sequence
with the highest score

 Add this highest-score-triple to your post-
processed final results

…
Start in SOX3 Start in SRY Score

0 0 80

0 1 85

0 2 81

1 10 90

1 15 96

2 4 72
 These are fictional results

© Heinz Nixdorf Institut / Fraunhofer IEM11

Output results

 Write the post-processed results back to a file

 Use a csv (comma separated values) file format

SOX3,SRY,Score

10,20,74

14,25,80

123,243,96

214,501,81

 Plot the results using the python script

 Or plot the results using a spreadsheet software like Libre Office, Google Sheets or MS Excel

 Hand-in your solution using the PANDA submission system

 The entire source code, compile command(s) (e.g. Makefile), and plots

 Include a README with your complete name (first name, middle name, last name), field of study and
faculty

 Again, those are fictional results

© Heinz Nixdorf Institut / Fraunhofer IEM12

Results before preprocessing

© Heinz Nixdorf Institut / Fraunhofer IEM13

Results after preprocessing

© Heinz Nixdorf Institut / Fraunhofer IEM14

Questions about the project?

© Heinz Nixdorf Institut / Fraunhofer IEM15

This is not a group project: plagiarism is prohibited will not be tolerated.

There is still more!

© Heinz Nixdorf Institut / Fraunhofer IEM16

C++ Programming

Optimize optimized things

 “Writing fast code”, Andrei Alexandrescu

 Part I
https://www.youtube.com/watch?v=vrfYLlR8X8k

 Part II
https://www.youtube.com/watch?v=9tvbz8CSI8M

 Example

size_t count_digits(size_t number){

size_t digits = 0;

do {

++digits;

number /= 10;

} while (number);

return digits;

}

 An (micro-)optimized example

size_t count_digits(size_t number){

size_t digits = 1;

for (;;) {

if (number < 10) return digits;

if (number < 100) return digits + 1;

if (number < 1000) return digits + 2;

if (number < 10000) return digits + 3;

number /= 10000;

digits += 4;

}

}

 Why is the second version faster?

 Division is a more expensive operation

 Comparison and addition is much cheaper

© Heinz Nixdorf Institut / Fraunhofer IEM17

https://www.youtube.com/watch?v=vrfYLlR8X8k
https://www.youtube.com/watch?v=9tvbz8CSI8M

Miscellaneous

 Very incomplete list of names to know

 Bjarne Stroustup

 Andrei Alexandrescu

 Chandler Carruth

 Sean Parent

 Herb Sutter

 Scott Meyers

 … many more

 C++ on youtube

 CppCon

 code::dive

 … many more

© Heinz Nixdorf Institut / Fraunhofer IEM18

Allocators for container types

 C++ concept – Allocator

 http://en.cppreference.com/w/cpp/concept/Allocator

#include <iostream>

#include <memory>

int main() {

// usually

int *i = new int(42);

int *array = new int[10];

delete i;

delete[] array;

// one level deeper

std::allocator<int> a;

int *other = a.allocate(10);

for (int i = 0; i < 10; ++i)

other[i] = 2;

a.deallocate(other, 10);

return 0;

}

 Every STL/BOOST container can be
parameterized by an allocator!

 Allocator defines an allocation strategy

 When to allocate memory?

 When to deallocate memory?

© Heinz Nixdorf Institut / Fraunhofer IEM19
[Figure taken from http://www.quickmeme.com/img/e7/e7633bedf897bb24ce668ac9c5df6bf88a58ff7e114d27606a756f4c4888a3f1.jpg]

http://en.cppreference.com/w/cpp/concept/Allocator

Allocators for container types

 Calls to new and delete are bottle-necks in HPC

 Calls go to the operating system, everything else
has to wait

 Imagine some iterative algorithm

matrix a = // some matrix;

matrix b = // some matrix;

// some iterative algorithm

while (some condition) {

matrix c = a * b;

a = update(a, c);

b = update(b, c);

}

// use matrix a, b, c

matrix update(const matrix& m,

const matrix& n) {

matrix result(...); // initalize

for ...

for ...

result[][] = m[][]

return result;

}

 Suppose matrix allocate its elements on the heap

 new and delete are called many times!

 If operator* and update() are optimized, new
and delete will become a bottle-neck

 A custom allocator helps with that!

20 © Heinz Nixdorf Institut / Fraunhofer IEM

Allocators for container types

 Allocators allow to define your own allocation
strategy

 For example (most game consoles do this)

1. Call new only once at program start

 Allocate everything you need up-front

2. At runtime your allocator takes care

3. Call delete only once at the end of your
program

 BOOST provides some allocator implementations

 Caution

 Objects allocated with different allocators cannot
be used together!

 http://en.cppreference.com/w/cpp/concept/Allocator

 The minimal allocator

#include <cstddef>

template <class T>

struct SimpleAllocator {

typedef T value_type;

SimpleAllocator(/*ctor args*/);

template <class U>

SimpleAllocator(const SimpleAllocator<U> &other);

T* allocate(std::size_t n);

void deallocate(T* p, std::size_t n);

};

template <class T, class U>

bool operator==(const SimpleAllocator<T>&,

const SimpleAllocator<U>&);

template <class T, class U>

bool operator!=(const SimpleAllocator<T>&,

const SimpleAllocator<U>&);

© Heinz Nixdorf Institut / Fraunhofer IEM21

http://en.cppreference.com/w/cpp/concept/Allocator

Separate allocation from initialization: new and delete revisited

 Allocating a type dynamically is a two step process

 Allocate memory on the heap

 Initialize the memory using the constructor

 Can we re-use the allocated heap memory?

 Yes!

struct S {

int x;

int y;

S(int x, int y) : x(x), y(y) {}

}

int main() {

S *s = new S(1, 2);

s->x = 13;

s->y = 13;

delete s;

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM22

Separate allocation from initialization

 http://en.cppreference.com/w/cpp/memory/new/operator_new

 Use (default) placement new

#include <iostream>

#include <cstdlib>

#include <memory>

struct S {

int x;

int y;

S(int x, int y) : x(x), y(y) {}

void print() {

std::cout << "x: " << x

<< ", y: " << y << '\n';

}

};

 You can also define your own operator new and delete

int main() {

// using the heap

S *s = new S(1, 2);

s->x = 13;

s->print();

// call dtor but do not free

s->~S();

// construct and place in 's'

S *t = new(s) S(42, 1024);

t->print();

// call dtor and free

delete t;

// using the stack

unsigned char buffer[100];

// construct and place in 'buffer'

S *u = new(buffer) S(11, 22);

u->print();

// is on stack, so call dtor

u->~S();

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM23

http://en.cppreference.com/w/cpp/memory/new/operator_new

Debug your code: gdb and lldb

 If the code is too complex to be executed in your head …

let a debugger execute it for you!

 gdb GNU debugger

 lldb LLVM debugger

 Command-line debugging tools

 What is debugging:

 Inspect your code and your variables, registers, … by executing it line by line

 Set break points and halt your program at interesting points

 Painful (but practical) to use in the command-line

 Better use it within some IDE like VS Code

© Heinz Nixdorf Institut / Fraunhofer IEM24

How to debug your code?

 Set break-points right before the code of interest

 Multiple break-points can be set

 ‘Watch’ variables of interest

 Step through the code

 Detect where it goes wrong

 Fix the bug

 Check the fix

© Heinz Nixdorf Institut / Fraunhofer IEM25
[Figure taken from https://www.linkedin.com/pulse/debug-your-code-easy-way-sanette-tanaka-1]

How to debug your code?

 Compile your code with –g

-g Produce debugging information in the operating system's native

format (stabs, COFF, XCOFF, or DWARF 2). GDB can work with this

debugging information.

[…]

GCC allows you to use -g with -O. The shortcuts taken by optimized

code may occasionally produce surprising results: some variables

you declared may not exist at all; flow of control may briefly move

where you did not expect it; some statements may not be executed

because they compute constant results or their values are already

at hand; some statements may execute in different places because

they have been moved out of loops.

Nevertheless it proves possible to debug optimized output. This

makes it reasonable to use the optimizer for programs that might

have bugs.

[…]

© Heinz Nixdorf Institut / Fraunhofer IEM26

How to debug your code using VS Code?

© Heinz Nixdorf Institut / Fraunhofer IEM27

© Heinz Nixdorf Institut / Fraunhofer IEM28

© Heinz Nixdorf Institut / Fraunhofer IEM29

© Heinz Nixdorf Institut / Fraunhofer IEM30

What next?

 Use C++ in your projects

 Get more experience

 Be curious

 Make mistakes

 Take your time

 C++ is huge

 Reads books, blog articles, programming forums

 Learn the tools used in professional software development

 Build tools e.g. make, cmake, …

 Debuggers e.g. gdb, lldb

 Tools from the compiler tool chain e.g. nm

 Version control systems e.g. git (https://git.cs.upb.de)

© Heinz Nixdorf Institut / Fraunhofer IEM31

https://git.cs.upb.de/

Thank you
very much!

 At the end, I hope that you find C++ somewhat useful!

© Heinz Nixdorf Institut / Fraunhofer IEM32

Thank you for your attention
Questions?

