
!

C++ PROGRAMMING

Lecture 2

Secure Software Engineering Group

Philipp Dominik Schubert

CONTENTS

1. Functions

2. std::string

3. std::vector<typename T>

4. Containers

5. Pointer and reference types

© Heinz Nixdorf Institut / Fraunhofer IEM2

Notion of a function

 “A function declaration introduces the function name and its type. A function definition associates the
function name and type with the function body.” [en.cppreference.com]

 Example: a function that computes the maximum of two integer values

 Declaration

int max(int, int);

int max(int a, int b); // or with formal parameter names

 Definition

int max(int a, int b) {

if (a >= b) { return a; }

return b; // observe, that we do not need ‘else’ here

}

 Some languages allow function definition only (e.g. Java)

 We will learn why function declarations are useful in the next lecture

© Heinz Nixdorf Institut / Fraunhofer IEM3

What is a function?

© Heinz Nixdorf Institut / Fraunhofer IEM4

 A function is a little machine

 Gets some input

 Manipulates input

 Returns output

 Think of it as a functional unit!

 Similar to a mathematical function

Mathematical functions and C++

© Heinz Nixdorf Institut / Fraunhofer IEM5

 Declaration in C++

 unsigned f(unsigned, unsigned);

 Definition in C++

 unsigned f(unsigned x, unsigned y) { return x + y; }

 Note unsigned is a shorthand for unsigned int

 Task

 Declare a function 𝑓 that is able to sum two numbers 𝑥, 𝑦 ∈ ℕ

 Define this function 𝑓 to actually sum two numbers 𝑥, 𝑦 ∈ ℕ

 Declaration in mathematics

 𝑓:ℕ × ℕ → ℕ

 Definition in mathematics

 𝑓 𝑥, 𝑦 ⟼ 𝑥 + 𝑦

Functions in C++

 Note

 A function may not return

 A function may receive no parameters

void f() {} // void is a ”special” type no type

void g(int a);

void h(void);

int returnOne() { return 1; }

 Functions should have a “meaningful” name (unlike mathematical functions)

 General rule: name things according to their purpose, same holds for variables!

 Function’s in- and output can be …

 Built-in types

 User-defined types (today and next time)

© Heinz Nixdorf Institut / Fraunhofer IEM7

Functions in C++

 Lets define a function

 Why you should use meaningful names:

int function(int x, int y) {

int result = x;

for (int i = 2; i <= y; ++i) {

result *= x;

}

return result;

}

 What is the value of result after the function call?

 int result = function(2, 4);

 16

 What does the function do?

 Implements the power function

 What would be a better declaration?

 int pow(int base, int exponent);

 Note this function “only works” for integers!

 Don’t try int result = pow(2.5, 4.8);

 Significant figures get cut off (type casting)

© Heinz Nixdorf Institut / Fraunhofer IEM8

Use of functions

 Use a function to

 perform a logical task

 that has to be performed multiple times

 don’t repeat yourself

 build an abstraction / generalization

 structure your source code

 The task described by a function can be reused!

 Faster development

 Less error prone

 Improved readability

 Use libraries: a collection of useful functions

int pow(int base, int exponent) {

int result = base;

for (int i = 2; i <= exponent; ++i) {

result *= base;

}

return result;

}

9

Use of functions

 Let’s consider the factorial function!

 Sequential

int factorial(int n) {

int f = n;

while (n-- > 1) {

f *= n;

}

return f;

}

 What is that?

int factorial(int n) {

if (n > 1) { return n * factorial(n-1) };

return 1;

}

 Computes the factorial function using recursion!

© Heinz Nixdorf Institut / Fraunhofer IEM10

Conditional assignments and the ternary operator

 If an assignment depends on a condition you can use a shortcut

int i = ... // some value

int variable;

if (i > 10) {

variable = 100;

} else {

variable = 0;

}

int variable = (i > 10) ? 100 : 0; // shorthand which does the same

 Note there are many of these short forms

 c++;

 d += 10;

 unsigned // shorthand for unsigned int

 You will get used to it

© Heinz Nixdorf Institut / Fraunhofer IEM
10

Recursion

 With functions one can make use of recursion!

 “Recursion occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of
disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics
and computer science, where a function being defined is applied within its own definition.” [en.wikipedia.com]

 Another recursive definition of recursion: “Recursion, see recursion!”

 A recursive function uses itself to solve a task

 A function exhibits recursive behavior if

1. it defines one (or more) base case(s) that do not use recursion

2. a set of rules that reduce all other cases towards the base case

© Heinz Nixdorf Institut / Fraunhofer IEM
11

[Figure taken from http://giphy.com/]

https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Function_(mathematics)

Factorial function revisited

int factorial(int n) {

if (n > 1){ return n * factorial(n-1);}

return 1;

}

 What happens if factorial gets called?

int result = factorial(5);

 Let’s see what happens:

factorial(5)

if (5 > 1) return 5 * factorial(4);

factorial(4)

if (4 > 1) return 4 * factorial(3);

factorial(3)

if (3 > 1) return 3 * factorial(2);

factorial(2)

if (2 > 1) return 2 * factorial(1);

factorial(1)

if (1 > 1) NO!

return 1;

We have reached the base case!

The call to factorial(5) can now evaluate

5 * 4 * 3 * 2 * 1 = 120

 If you are still not convinced have a look at:

 What on Earth is Recursion? – Computerphile

 Recursion often allows for elegant solutions

 Requires some time to get used to

© Heinz Nixdorf Institut / Fraunhofer IEM13

https://www.youtube.com/watch?v=Mv9NEXX1VHc

Functions

 You can now divide your computations into
logical pieces (functions)

 The OS calls the main function for you

 In main you can call whatever you like

int main() {

int i = factorial(5);

int j = factorial(6);

return 0;

}

int factorial(int n) {

return (n > 1) ? n * factorial(n-1) : 1;

}

© Heinz Nixdorf Institut / Fraunhofer IEM14

A note on functions Actual parameters passed to a function are copied by default!

 Inside a function you work on copies by default!

int increment(int x) { return ++x; }

int x = 10;

int y = increment(x); // y is now 11

// x is still 10

 Remember constexpr

// C++11 allows one return statement

constexpr int addNumbers(int a, int b) {

return a + b;

}

// C++14 allows more than one statement

constexpr int factorial(int n) {

int result = 1;

while (n-- > 0) {

result *= n;

}

return result;

}

 With constexpr we effectively have to versions:

 a constexpr version

 a non-constexpr-version

// can be evaluated at compile time

constexpr int i = factorial(8);

int x = ... // non-constant x

// can only be evaluated at run time

int j = factorial(x);

© Heinz Nixdorf Institut / Fraunhofer IEM15

A note on functions

 Function calls come with some costs in terms of performance

 Safe registers’ contents, put function arguments on the stack, increment stack pointer, …, restore
registers, perform jump back

 But usually that is not why your code is slow!

 If high performance really matters, compiler can inline small functions

 A function call is replaced by copying the functions body to the call site

 Use the keyword inline to give the compiler some hints

inline int add(int a, int b) { return a + b; }

// a call to add()

int c = add(10, 20);

// may be replaced with

int c = 10 + 20;

 Inlining is only necessary in rare cases (sometimes you make it worse)

 Compiler inlines on its own if compiler optimizations are turned on (-Ox flag, where x is 1,2 or 3)

© Heinz Nixdorf Institut / Fraunhofer IEM16

Local and global variables

 Local variables are only accessible within a
certain function / scope (e.g. main)

 A variable is local if it is defined inside a function

 Example

int main() {

int i = 42;

int j = 13;

std::cout << i << '\n';

std::cout << j << '\n';

return 0;

}

 So far we only used local variables

 Global variables are accessible across functions
(and modules)

 A variable is global if it is not defined within a
function

 Example

int i = 10;

double d = 1.234;

void printGobals() {

std::cout << i << '\n';

std::cout << d << '\n';

}

double addGlobals() {

return i + d;

}

© Heinz Nixdorf Institut / Fraunhofer IEM17

A note on global variables

 Try to avoid global variables as much as possible

 You rarely need them

 They break local reasoning

 It becomes pretty hard to understand the code

 It is hard to parallelize code that heavily makes use of globals

© Heinz Nixdorf Institut / Fraunhofer IEM18

User-defined types / non-built-in data types

 Two very important user-defined types

 std::string

 std::vector<typename T>

 Implemented in the standard template library (STL)

 Vector is perhaps the most used non-built-in data type

 You can define your own data types

 Use class or struct keyword

 Next lecture!

© Heinz Nixdorf Institut / Fraunhofer IEM19

std::string

 Why should you use std::string in C++?

 C has no built-in string datatype

 In C a string is stored in an array of characters

char str[] = "Hello, World!";

std::cout << str << '\n';

int i = 0;

while (str[i] != '\0') {

std::cout << str[i] << '\n';

++i;

}

char *ptr2str = "Hello, World!";

char data[10] = "Hi!";

 Such character arrays are (hopefully) terminated with '\0'

 Which you can’t see directly

 Remember built-in arrays are dangerous

 What if you forget the size of that array?

 What if you lose '\0' or have multiple '\0'
in your character array through incorrect
string processing?

 You risk reads and writes outside your array

 Undefined behavior / buffer overflows

 Please watch this video

 Buffer overflow attack

 C++ has no built-in strings either

 But it offers a safe wrapper: std::string

© Heinz Nixdorf Institut / Fraunhofer IEM20

https://www.youtube.com/watch?v=1S0aBV-Waeo

std::string

 Use the #include <string> header file

 std::string allows you to store strings

 std::string offers a lot of useful functionalities as well

 Functionalities are offered as member functions (member functions: next lecture)

 std::string can grow and shrink dynamically (dynamic memory allocation: next lectures)

 std::string knows its size as well, unlike simple built-in arrays!

 std::string automatically adds the terminal character '\0'

 No buffer overflows!

 For the complete list of functionalities see

 http://en.cppreference.com/w/cpp/string/basic_string

© Heinz Nixdorf Institut / Fraunhofer IEM21

http://en.cppreference.com/w/cpp/string/basic_string

std::string

 The design is so good, it can be used like an
ordinary built-in type (C++ is powerful)

 Example

// create a string from string literal

std::string str = "Hello World!";

// copy str to other

std::string other = str;

// get str’s size

std::cout << str.size() << '\n';

// replace a single character

str[4] = 'O';

// append some more characters

str += "some more characters";

// extract a substring

std::string hello = str.substr(0,5);

std::string yetanother = "Hello";

// check for equality

std::cout << (hello == yetanother)

<< '\n';

© Heinz Nixdorf Institut / Fraunhofer IEM22

std::vector<typename T>

 Again built-in arrays are dangerous for several reasons

 std::vector<typename T> is a safe wrapper for built-in arrays (similar to std::string)

 std::vector<typename T> can store multiple elements of the same type in sequence

 It is mutable and can grow and shrink dynamically (dynamic memory allocation: next lectures)

 Ok fine, but what is this <typename T>?

 This is called a template parameter

 Templates and template metaprogramming? (in the next lectures)

 What are templates used for?

 Allow for writing code that is independent of the type! (Cannot be done in the C language)

 A vector can store any type!

vector<int> ivec = {1, 2, 3};

vector<double> dvec;

vector<std::string> svec = { "Hello", "World", "!" };

© Heinz Nixdorf Institut / Fraunhofer IEM22

std::vector<typename T>

 How to initialize (or construct) a vector?

 Example

std::vector<int> ivec; // call to default constructor

std::vector<int> ivec(10); // call to constructor

std::vector<int> ivec(10, 42); // another constructor

std::vector<int> ivec{1, 2, 3, 4, 5}; // yet another constructor

std::vector<int> ivec = {1, 2, 3, 4, 5}; // even more

 A vector can be constructed using one of its constructors

 All user-defined data types have constructors

 A constructor’s job is to construct a variable / an object

 Acquires resources and initializes correctly

 Constructors are special member functions (next lecture)

© Heinz Nixdorf Institut / Fraunhofer IEM24

std::vector<typename T>

 std::vector is designed such that it can be used like a built-in type

 Example

std::vector<int> ivec = {1, 2, 3};

std::cout << "size: " << ivec.size() << '\n';

ivec.push_back(42);

ivec.push_back(120);

std::cout << "size: " << ivec.size() << '\n';

for (int i : ivec) {

std::cout << i << ' ';

}

std::cout << '\n';

 Note: we are using members functions (next lecture)

 Members can be data (variables) or functions data members / function members

 Members can be accessed with the . (point) operator

© Heinz Nixdorf Institut / Fraunhofer IEM25

Type aliasing

 Introduce type aliases

 using the typedef or using keyword

 Prefer using (modern version)

 as types get more complicated

 to stride towards more flexible programs

 typedef double real_t;

 using ivec = vector<int>;

 Dealing with types decltype(*) (this is a C++11
feature)

 * can be a variable / expression / function

const int i = 13;

decltype(i) x = 10;

 x has now i’s declared type (which is const int)

 A “real world example”

// oh dear

std::vector<std::pair<std::string,int>> v;

// better use an alias for that

using vpsi_t =

std::vector<std::pair<std::string,int>>;

// you can declare variables of that type

vpsi_t x; // easier to read and write

© Heinz Nixdorf Institut / Fraunhofer IEM26

What are containers?

 std::vector<typename T> is a container

 A container can store a bunch of data

 Containers are generic

 Use one or more template parameters

 Can hold values of any type

 Use different containers for different purposes

 Choose the right container depending on your problem

 Note that you can nest containers!

 std::vector<std::vector<double>> matrix = { {1, 2}, {4, 5} };

© Heinz Nixdorf Institut / Fraunhofer IEM27

STL containers?

 Sequence containers

 array // fixed size array

 vector // flexible size array

 deque // double-ended queue

 forward_list // singly linked list

 list // doubly linked list

 Associative containers

 set // unique element set

 map // unique element associative

storage

 multiset // non-unique element set

 multimap // non-unique element

associative storage

 Unordered associative containers

 unordered_set // hash set

 unordered_map // hash map

 unordered_multiset // …

 unordered_multimap // …

 Container adaptors

 stack // stack adaptor

 queue // queue adaptor

 priority_queue // priority queue
adaptor

 STL containers …

 are quite useful

 are implemented very efficiently

 are accessible by including their header file

© Heinz Nixdorf Institut / Fraunhofer IEM28

When to use what?

 Sequence containers

// fixed size array

std::array<int, 4> a = {1, 2, 3, 4};

std::cout << a.size() << '\n';

for (int i : a) {

std::cout << i << ' ';

}

// flexible size array

std::vector<int> b = {1, 2, 3, 4};

std::cout << b.size() << '\n';

for (int i : b) {

std::cout << i << ' ';

}

b.push_back(5);

b.push_back(6);

 Rarely used:

 forward_list // singly linked list

 list // doubly linked list

 Associative containers

// unique element set

std::set<int> c = {1, 2, 3};

c.insert(5);

c.insert(6);

if (c.count(5)) {

std::cout << "set contains '5'.\n";

}

// unique element associative storage

std::map<int, std::string> d;

d.insert(std::make_pair(1, "A"));

d.insert(std::make_pair(2, "B"));

d[3] = "C";

std::cout << d[2] << '\n';

 You may wish to use their unordered counterparts

© Heinz Nixdorf Institut / Fraunhofer IEM28

Containers in action

 Use STL vector to represent mathematical vectors ∈ ℝ𝑛

 std::vector<typename T> // use #include <vector>

 Task: create two vectors to represent vectors from maths and write a function that calculates the scalar
product!

 x, y ∈ ℝ3

 The scalar product < ∙ ,∙ > is defined as

 < 𝑎, 𝑏 > = σ𝑖=0
𝑛 𝑎𝑖 ∙ 𝑏𝑖

 Solution in C++

std::vector<double> x{1, 2, 3}; // call the initializer_list constructor

std::vector<double> y{4, 5, 6}; // call the initializer_list constructor

 We now have two vectors x and y filled with some floating-point numbers

© Heinz Nixdorf Institut / Fraunhofer IEM29

Containers in action

 < 𝑎, 𝑏 > = σ𝑖=0
𝑛 𝑎𝑖 ∙ 𝑏𝑖

 A function that computes the scalar product

double scalar_product(std::vector<double> x, std::vector<double> y) {

double scalar_prod = 0; // create a variable holding the result

if (x.size() != y.size()) { /* handle that error */ } // check dimensions

for (size_t i = 0; i < x.size(); ++i) { // iterate over vectors’ entries

scalar_prod += x[i] * y[i]; // multiply the entries and sum up to result

}

return scalar_prod; // return the result

}

 More on error handling later on

© Heinz Nixdorf Institut / Fraunhofer IEM30

Containers in action

 Data

std::vector<double> x{1, 2, 3};

std::vector<double> y{4, 5, 6};

 Function to manipulate data (computes scalar product)

double scalar_product(std::vector<double> x, std::vector<double> y) {

double scalar_prod = 0; // create a variable holding the result

if (x.size() != y.size()) { /* handle that error */ } // check dimensions

for (size_t i = 0; i < x.size(); ++i) { // iterate over vectors’ entries

scalar_prod += x[i] * y[i]; // multiply the entries and sum up to result

}

return scalar_prod; // return the result

}

 double s = scalar_product(x, y);

 s is 32

© Heinz Nixdorf Institut / Fraunhofer IEM31

More on types: pointer, reference, and value types

 Take a deep breath!

 What makes C++ so powerful?

 Full control over resources (e.g. memory) !

 Three “kinds / versions” of types exist in C++

 “Normal”/value integer type int i = 42;

 Pointer to an integer type int *j = &i;

 Reference to an integer type int &k = i;

 Makes C++ very powerful

 Pointers and references are types that store addresses

 Think of them as “pointers” (points-to graphs)

© Heinz Nixdorf Institut / Fraunhofer IEM32

j

i

k

[Figure taken from http://www.quickmeme.com/meme/3ovgn9]

More on types: pointers

 Pointers, references, addresses?

 Every variable has a memory address

 Think of houses (= variables)

 People live in houses (= values)

 Every house has a house number (= address)

int *i_ptr; // i_ptr can store an address to an int

double *d_ptr; // d_ptr can store an address to a double

float *f_ptr = nullptr; // f_ptr is initialized with a null-pointer: f_ptr points to nothing!

int i = 42; // integer initialized with 42

int *j = &i; // j holds the address of i (or points to i), & is the address of operator here

int *k; // uninitialized pointer to an integer

k = &i; // let k point to i

int **l = &j; // l holds the address of j

© Heinz Nixdorf Institut / Fraunhofer IEM33

int i = 42;

// this is house i

// 42 lives here

// i´s address is

&i

More on types: pointers

 Pointers, references, addresses?

 Every variable has a memory address

 A mail man can deliver letters and parcels

 You can also find a person using his address

int i = 42;

int *j = &i; // get i’s address, this is called referencing (we create a pointer / reference)

*j = 100; // modify i’s value through its address, this is called dereferencing

int k = *j; // obtain i’s value through its address, this is called dereferencing

© Heinz Nixdorf Institut / Fraunhofer IEM34

int i = 42;

// this is house i

// 42 lives here

// i´s address is

&i

More on types: pointers

 Pointers, references, addresses?

 Every variable has a memory address

int i = 42;

int *j = &i; // get i´s address, this is called referencing (we create a pointer / reference)

int k = *j; // obtain i´s value through its address, this is called dereferencing

std::cout << &i << '\n';

std::cout << i << '\n';

std::cout << &j << '\n';

std::cout << j << '\n';

std::cout << &k << '\n';

std::cout << k << '\n';

© Heinz Nixdorf Institut / Fraunhofer IEM35

int i = 42;

// this is house i

// 42 lives here

// i´s address is

&i

More on types: pointers

 Important

 A pointer might be null

 int *i = nullptr;

 Meaning: the address does not exist / there is no address / i points to nothing

 Don’t dereference a nullptr!

 A pointer can be checked for nullptr

if (i == nullptr) { cout << "i holds the null pointer\n"; }

 Or if you wish to pretend to be cool

if (!i) { cout << "i holds the null pointer\n"; }

© Heinz Nixdorf Institut / Fraunhofer IEM36

More on types: pointers

 Things to remember

 Declare a pointer type using *

 Take an address of a variable with &

 Dereference a pointer with *

 A pointer variable may hold the null pointer nullptr

 A pointer may dangle

int *p;

int q = *p; // please don't

 We will discuss techniques and tools to debug memory issues later on

© Heinz Nixdorf Institut / Fraunhofer IEM37

More on types: references

 Example

int i = 42;

int &j = i;

 Declare a reference type by using &

 “You can use j as if it was i”

 References behave much like pointers, but

 Pointers can be re-assigned, references can not

 Pointers can be null and are allowed to dangle

 References always refer to a valid object

 Pointer’s address can be taken, references addresses cannot be taken

 Pointers allow for pointer arithmetic, references don’t (next lecture(s))

 References are internally implemented as pointers

 In general: references are much safer to use

© Heinz Nixdorf Institut / Fraunhofer IEM38

References vs pointers

 When to use what and why do I need references and pointers?

 References

 Use references in functions’ parameter lists

 See next slides

 Pointers

 Use pointers to implement algorithms and data structures (e.g. linked lists)

 Use pointers for dynamic memory allocation

 Next lecture(s)

© Heinz Nixdorf Institut / Fraunhofer IEM39

Functions: parameter passing (and returning)

 How to pass and return huge amounts of data to and from a function?

 Consider a function that implements a matrix multiplication

matrix matrixMult(matrix a, matrix b);

 Problem

 If matrixMult() is called, actual parameters are copied!

 Matrices can be huge, millions of elements copying may be very expensive

 Processor is only copying data, rather than computing useful results

 Can we avoid copying large data into functions?

 Pass data by reference, rather than by value!

matrix matrixMult(matrix& a, matrix& b);

 Matrices are not copied, we just pass a reference to a matrix (which is an address)

 Matrix references can be used as if they were the matrices within the function’s body

© Heinz Nixdorf Institut / Fraunhofer IEM40

Functions: parameter passing (and returning)

matrix matrixMult(matrix& a, matrix& b);

 Problem

 Caution: If we modify the references a and b within the function we are changing the actual matrices

 How can we avoid accidental changes made to the matrices a and b?

 Use const references to avoid modifications

matrix matrixMult(const matrix& a, const matrix& b);

 Changes made to const references result in compiler errors

 How to return results if data to be returned is very large?

 Return by reference?

matrix& matrixMult(const matrix& a, const matrix& b);

 No! Return by value, compilers use return value optimization (RVO)!

 Use: matrix matrixMult(const matrix& a, const matrix& b);

© Heinz Nixdorf Institut / Fraunhofer IEM41

Functions: parameter passing (and returning)

 If your data is small (e.g. built-in types such as int)

 Pass and return by value (copy data)

 If you do not know the size upfront (e.g. in case of containers) or deal with huge data

 Pass by reference (data itself stays where it is, no unnecessary copying)

 Use const if you do not wish to modify the data within the function

 Return by value (since all modern compilers support RVO)

© Heinz Nixdorf Institut / Fraunhofer IEM42

Recap

 Functions

 Recursion

 Conditional assignments

 constexpr functions

 inline functions

 Local and global variables

 std::string and std::vector<typename T>

 STL containers

 Containers in action: scalar product

 Values, pointers, references

 Parameter passing

© Heinz Nixdorf Institut / Fraunhofer IEM44

Thank you for your attention
Questions?

