
C++ Programming Sheet 8

C++ Programming

Exercise Sheet 8
Secure Software Engineering Group

Philipp Schubert
philipp.schubert@upb.de

June 11, 2021

Solutions to this sheet are due on 18.06.2021 at 16:00. Please hand-in a digital version of your answers
via PANDA at https://panda.uni-paderborn.de/course/view.php?id=22691.
Note: If you copy text or code elements from other sources, clearly mark those elements and state the
source. Copying solutions from other students is prohibited.

This exercise sheet is all about object oriented programming (OOP). You can achieve 16 points in
total.

Exercise 1.
Consider the following code:

#include <iostream>

class base {
public:
virtual ˜base() = default;
virtual void whoAmI() { std::cout << ”I am base\n”; }

};

Define two types derived one and derived two using the class keyword that both inherit from base.
(1 P.)

a)

In each of the derived classes override the virtual whoAmI() function member such that it prints the
name of the derived class. (1 P.)

b)

Why is it a good idea to explicitly specify functions that override a virtual function with the key-
word override? Describe a scenario where one gets into huge trouble when not having specified
overriding functions as override! (2 P.)

c)

Page 1

https://panda.uni-paderborn.de/course/view.php?id=22691


C++ Programming Sheet 8

Exercise 2.
Consider the following two interfaces:

#include <iostream>

struct greetings {
virtual ˜greetings() = default;
virtual void say hello() = 0;
virtual void say goodbye() = 0;

};

struct politeness {
virtual ˜politeness() = default;
virtual void say please() = 0;
virtual void say thanks() = 0;
virtual void say your welcome() = 0;

};

Define a class speaker that implements both of the above interfaces. All interface functions should be
implemented by writing an ”adequate message” to the command line. Test your class speaker by creating
an instance of that very class and calling all of its member functions. (2 P.)

Exercise 3.
Consider the following container interface:

class container {
public:
virtual ˜container() = default;
virtual double& operator[] (size t idx) = 0;
virtual const double& operator[] (size t idx) const = 0;
virtual size t size() const = 0;

};

Define a class vec that implements the container interface. Use a member variable of type
std::vector<double> to store the elements in your vec type. Additionally, provide a constructor
vec(size t size) that initializes the member variable such that it is capable of holding size elements.
(4 P.)

a)

Define another class lst that also implements the container interface. But this time, use a member
variable of type std::list<double> to store the elements in your lst type. Also provide a constructor
lst(size t size) that initializes the member such that it is able to store size elements. (Hint: when
implementing operator[] for your list wrapper, the function std::advance may come in handy.) (4 P.)

b)

Observe the code shown below. The functions fill container() and sum container() can operate on
any type that implements the container interface. Create a variable of your vec and a variable
of your lst type such that they can both store 10 double elements. Then, call fill container() and
sum content() with each of those variables. You should obtain 55, as a result, in both cases. (2 P.)

c)

void fill container(container& c) {
for (size t i = 0; i < c.size(); ++i) {

c[i] = i + 1;
}

}

Page 2



C++ Programming Sheet 8

double sum container(const container& c) {
double sum = 0;
for (size t i = 0; i < c.size(); ++i) {

sum += c[i];
}
return sum;

}

Exercise 4.
This is an optional exercise. Consider the following code:

#include <iostream>

template <class T> class base {
protected:

T base value;

public:
base(T t) : base value(t) {}

};

template <class T> class derived : public base<T> {
private:

T derived value;

public:
derived(T t, T u) : base<T>(u), derived value(t) {}
void printValues() {

std::cout << base value << ’\n’;
std::cout << derived value << ’\n’;

}
};

int main() {
derived<int> d(20, 10);
d.printValues();
return 0;

}

Try to compile and execute the code. The compilation should result in an error. Can you fix the error?
(Hint: you may wish to precisely google for the right terms to find the solution.)
(0 P.)

Exercise 5.
Additional material: I highly recommend to watch the recording of the talk ”Intro to the C++ Object
Model”, by Richard Powell (CppCon 2015) https://youtu.be/iLiDezv_Frk to deepen and extend
your knowledge about C++’s object model. (0 P.)

Page 3

https://youtu.be/iLiDezv_Frk

